An Introduction to Attention, Transformers, GPT-x, BERT, and ViT

Transformers



In deep learning, attention is a term used to describe a computational
mechanism that allows the network to enhance important parts of the data
and diminish other parts. What is important is learned by the attention
mechanism from the data and its context.

Attention mechanisms were essentially tacked on to the existing network
architectures starting around 2014.

But in 2017, a new fully attention-based architecture was introduced
called a Transformer. It was built for Machine Translation, but was quickly
adapted to other NLP tasks.

This new architecture would give rise to jaw-dropping advances in NLP,
begin to dominate in Computer Vision, and allow for the emergence of
multi-modal networks combining text, images, video, audio, etc.



The Transformer

Vaswani et al. 2017
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Transformer

The Transformer is originally designed as an encoder + decoder for machine translation,
e.g., translating French to English.

The loss is standard cross entropy loss with teacher forcing:

N
L) = = ) log pjwf|wiy, wE,_)

=1

where p,is the model,

A A A .
Wi,y are words wi, ..., w;, in the source language,

B B B .
Wi,y are words w ', ..., w,,in the target language



Transtormer: Encoders + Decoders
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Transformer: Self-Attention

Output

Probabilitics

!

_Softmax__|

|

Linear |

b

(

Add & Norm

Feed
Forward

4

Add & Norm

Multi-Head
Attention

_L_%:i_d

Add & Norm

Masked
Multi-Heac
Attention

.

1
I—

S

Output
Embedding

I

Outputs
(shitted nght)

Rositional
Encoding

Mult-Head Auention

t

Linear

™ h
¢
-

ultiple heads
(num=h)

Self Attention

‘ Scaled Dot-Product Attention

t
[ matvu |
t
| SoftMax |

—_—

Mask (opt)

| MatMul_|




Transtormer: Encoders + Decoders
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Transtormer: Encoders + Decoders
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Transformer: Encoder + Decoder

O
t
Feed Forward j
o
Encoder-Decoder Attention J
4
Self-Attention J
t

INPUT | Je suis étudiant




Transtormer: Encoder
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Transtformer: Inputs Words Mapped to Vectors

Before going into the network words are tokenized
and mapped to vectors.



Transtormer: Encoder
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Transtormer: Encoder
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Transtormer: Encoder
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Transtormer: Encoder
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Transtormer: Encoder
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Queries, Keys, and Values
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Queries, Keys, and Values

softmax( )X




Queries, Keys, and Values
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He often considered his memories as traffic on
the congested NYC avenues, with his days at
Columbia like a truck painted red with all horns
blaring.



Queries, Keys, and Values

softmax( )X -

For each input word, we get a composite vector that combines
representations from all words in the sequence through “self-attention.”



Queries, Keys, and Values

softmax( )X -

We got here using a single attention “head” and the parameters that
define it in the matrices W€, WX and WV,
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Multi-Headed Selt-Attention
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Multi-Headed Selt-Attention

X

Calculating attention separately in
eight different attention heads

ATTENTION ATTENTION ATTENTION
HEAD #0 HEAD #1 HEAD #7




Multi-Headed Selt-Attention

1) Concatenate all the attention heads 2) Multiply with a weight
matrix that was trained
jointly with the model

X

3) The result would be the -~ matrix that captures informatian
from all the attention heads. We can send this forward to the FFNN




Multi-Headed Self-Attention
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input sentence* each word*

Je
Suis

* In all encoders other than #0,

we don't need embedding.

We start directly with the output
of the encoder right below this one

R

3) Split into 8 heads.
We multiply X or
? with weight matrices

W@
WoK
, WOV

W;G
WK
W,V

4) Calculate attention
using the resulting

Q/K/V matrices

o

5) Concatenate the resulting -~ matrices,
then multiply with weight matrix V- to
produce the output of the layer

SAIM
iAFL)
ThT A

vy

P —

S —— —

Prp———

LN S




Input embeddings also have positional encodings
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Positional encoding is naturally a fcn of position

PO = 1p(D| gis embedding dimension

Pds(f) /

dx1

! is the position of the word Iin the sequence



Transformers use sinusoidal position encodings
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! is the position of the word Iin the sequence



Transformers use sinusoidal position encodings

Frequency decreases with increasing k
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Transformers use sinusoidal position encodings
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Sinusoidal Position Encodings
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Residual Connections and Layer Normalizations
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Residual Connections and Layer Normalizations
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Residual connections are used to help gradient flow.



Residual Connections and Layer Normalizations

, Add & Normalize
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Residual Connections and Layer Normalizations
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ENCODER #2

ENCODER #1

Transformer: Encoders and Decoders
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Decoding time step:@Z 3456
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Decoding time step: 1@3 4 5 6
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GPT-x:

Generative Pre-Training Transformer

Radford et al. 2018



GPT-x:

OpenAl

Radford et al. 2018
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GPT-x: Generative Pre-Training Transformer
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Causal Language Model

Consider a text sample as sequence of words/tokens w,,...,w, , a causal
language model py computes cross entropy loss as:

N
L) = — ) 1og pfw; | wy, ..., w,_))

=1



GPT-x: Next Word Prediction
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GPT-x: Masked Self-Attention

Masked Self-Attention




Datasets

Common Crawl
(filtered)

WebText?2
Books1
Books2

Wikipedia

GPT-3: Training Data

Quantity
(Tokens)

410 BN

19 BN
12 BN
55 BN

3 BN

Weight in
Training Mix

60%

22%

8%

8%

3%

Epochs elapsed when training for
300 BN tokens

0.44

2.90
1.90
0.43

3.40



GPT-3: Training Data Samples

Text: Second Law of Robatics: A robot must obey the orders given it by human beings

Generated training examples

Example # Input (features) Correct output (labels)

1 Second law of robotics - _

2 Second law of robotics X a

3 Second law of robotics : a robot




GPT-3: Loss Computation

Unsupervised Pre-training

/ \ Carrect output (label):

I Input (features) a robot must I -

I Qutput (Prediction) I



GPT-3: Loss Computation

L(@) = —logpy( < obey > | <a>,<robot >, < must>)

Uses standard cross-entropy 10ss: negative log likelihood of the correct token/word



GPT-3: Model Variants

Model Name Mparams Mayers @model TMheads @Ohead Batch Size Learning Rate
GPT-3 Small 125M 12 768 12 64 0.5M 6.0 x 1074
GPT-3 Medium 350M 24 1024 16 64 0.5M 3.0x104
GPT-3 Large 760M 24 1536 16 96 0.5M 25x1074
GPT-3 XL 1.3B 24 2048 24 128 IM 2.0 x 1074
GPT-32.7B 2.7B 32 2560 32 80 IM 1.6 x 1074
GPT-36.7B 6.7B 32 4096 32 128 2M 1.2 x 1074
GPT-3 13B 13.0B 40 5140 40 128 M 1.0x 104

GPT-3 175B or “GPT-3" 175.0B 96 12288 96 128 3.2M 0.6 x 104




GPT-3: Model Variants

Model Name Nparams Tlayers @model TMheads @head Batch Size Learning Rate
GPT-3 Small 125M 12 768 12 64 0.5M 6.0 x 10~4
GPT-3 Medium 350M 24 1024 16 64 0.5M 3.0x 104
GPT-3 Large 760M 24 1536 16 96 0.5M 25x 1074
GPT-3 XL 1.3B 24 2048 24 128 IM 2.0x 104
GPT-3 2.7B 2.7B 32 2560 32 80 IM 1.6 x 1074
GPT-3 6.7B 6.7B 32 4096 32 128 2M 1.2 x 104
DT : TOF 30 40 0 2 ) % 104
GPT-3 175B or “GPT-3" 175.0B 96 12288 96 128 3.2M 0.6 x 10~




GPT-3: Open Al AP

https://openai.com/api/



BERT:

Bidirectional Encoder Representations from Transtormers

Devlin et al. 2019



BERT: Bidirectional Encoder
Representations from Transformers
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BERT: Masked Language Model

e Designed to pre-train deep bidirectional representations
from unlabeled text by jointly conditioning on both left and
right context in all layers.

 Trained using a ‘Masked Language Model’ (MLM) pre-
training objective.

 MLM training is followed by training on ‘Next Sentence
Prediction’ (NSP) task.



BERT: Pre-training Data

* BooksCorpus (800M Words)

* English Wikipedia (2500M Words)



BERT; Masked LM

 15% of the words In the input sequence are masked
randomly.

A chosen token to be masked, is masked with the
following tokens:

« [IMASK] - 80% of the time.

e Random Token - 10% of the time.

e« Same Token - 10% of the time.

* Trained with Cross-Entropy loss.
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BERT: Next Sentence Prediction

Sentence A and B chosen as sentence pair.
Sentence pairs separated by [SEP] fed to the network.

50% of the time B is the actual next sentence that follows
A. Labeled as ‘IsNext’.

50% of the time it is a random sentence. Labeled as
‘NotNext’.



BERT; Architecture
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Figurc 1: Overall pre-training and finc-tuning procedurcs for BERT. Apart from output layers, the same architec-
tures are used in both pre-training and fine-tuning. The same pre-trained model parameters are used to initialize
models for different down-stream tasks. During fine-tuning, all parameters are fine-tuned. [CLS] i8 a special
symbol added in front of every input example, and [SEP] is a special separator loken (e.g. separaling ques-
tions/answers).



BERT: Architecture

BERT (Base)

e 12 Transformer Blocks (L=12)

e 768 dim. Hidden Embed. Size (H=768)
e 12 Self-Attention Heads (A=12)

« 110M parameters




BERT: Input Representation
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Figure 2: BERT input representation. The input embeddings are the sum of the token embeddings, the scgmenta-
tion embeddings and the position embeddings.



BERT: Feature Extraction

 \We can extract features from intermediate layers of the
model.

e Although fine-tuning is recommended, features can be
used without training.

e Model returns token-level features.



Variants of BERT

I've enjoyed preparing these slides, but I’'m running out of time.

Maybe | could get a Large Language Model (LLM) like OpenAl’s
ChatGPT to explain the variants of BERT...



ChatGPT on Variants of BERT

Let’s ask ChatGPT about variants of the BERT model:

ﬂ What are the many different variants of the large language model BERT?

BERT (Bidirectional Encoder Representations from Transformers) is a language maodel
that was developed by researchers at Google in 2018. It has since been improved and
extended by the research community, leading to the development of many different
variants of the original BERT model. Some of the mast commonly used variants of BERT
include BERT-Large, BERT-Base, and BERT-Base Uncased.



Asking ChatGPT more directly in follow up question:

Are there other variants like RoBERTa and if so could you list them?

Yes, there are other variants of BERT that have been developed by the research
community, such as RoBERTa (Robustly Optimized BERT Pretraining Approach), ALBERT
(A Lite BERT), and ELECTRA (Efficiently Learning an Encoder that Classifies Tokens
Accurately). These variants of BERT have been designed to improve upon the original
BERT model in various ways, such as by reducing the amount of training data required,

increasing the model's efficiency, or improving its performance on certain tasks.



Asking ChatGPT for more detail on RoBERTa vs. BERT:

What is the difference between BERT and RoBERTa?

BERT and RoBERTa are both large language models that use the Transformer architecture
to process and generate text. However, there are several differences between the two
models. BERT is a general-purpose language model that can be fine-tuned for a variety
of natural language processing tasks, such as sentiment analysis and question
answering. RoBERTa, on the other hand, is a variant of BERT that was specifically

designed to improve performance on these tasks.

One of the main differences between BERT and RoBERTa is that ROBERTa was trained on
a larger dataset and for a longer time than BERT, which makes it more accurate and more
effective at natural language processing tasks. Additionally, RoBERTa uses a different
training objective than BERT, which helps the model better capture the relationships
between words in a sentence. These differences make RoBERTa a more powerful and

effective language model than BERT for many natural language processing tasks.



ChatGPT previous answer was vague, pressing for details:

How does RoBERTa's training objective differ from BERT's?

The training objective is the function that a machine learning model is trying to optimize
during training. In the case of BERT and RoBERTa, both models are trained to maximize
the likelihood of predicting the correct word in a sentence, given the words that come
before and after it. However, the specific details of how this objective is implemented

differ between the two models.

One of the main differences between BERT and RoBERTa's training objectives is that
ROBERTa is trained using a larger dataset and for a longer time than BERT, which allows
the model to better capture the relationships between words in a sentence. Additionally,
RoBERTa uses a technique called dynamic masking, which randomly masks a different
number of words in each training example. This makes the model more robust and allows
it to better capture the meaning of longer sequences of words. These differences in the
training objective help ROBERTa to perform better on natural language processing tasks
than BERT.



What about the text-to-text T5 LLM:

52l

Ok, | get it. What about T5? How is T5 different from BERT?

T5 (Text-To-Text Transfer Transformer) is anaother large language model that was
developed by researchers at Google in 2020. Like BERT, TS uses the Transformer
architecture to process and generate text, but there are several key differences between
the two models.

One of the main differences between TS5 and BERT is that T5 is a general-purpose
language model that can be fine-tuned for a wide range of natural language processing
tasks, whereas BERT is primarily used for tasks such as sentiment analysis and question
answering. This means that TS5 can be used for a wider range of tasks than BERT, which

makes it a more versatile and powerful language model.

Another key difference between T5 and BERT is the way they are trained. T5 is trained
using a technigue called transfer learning, which allows the model to learn from a large
amount of unannotated text data. This makes T5 more data-efficient than BERT, which
requires a large amount of labeled data to achieve good performance on natural language
processing tasks. Additionally, T5 uses a different training objective than BERT, which

helps the model better capture the meaning and structure of natural language. These



Vision Transformer

Dosovitskiy et al. 2020/2021



VIT: Vision Transformer
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VIT: Vision Transformer
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ViT: Position Encodings

* The sinusoidal position encodings used for previous transformer
models don’t make sense for patches of images, as this encoding
does a poor job at encoding the proximity of the patches.

* For ViTs the position encodings are learnt by the model instead
of being imposed on the model as betore.



VIT: Vision Transformer

Model Layers Hiddensize D MLPsize Heads Params
ViT-Base 12 768 3072 12 86M
ViT-Large 24 1024 4096 16 307M

ViT-Huge 32 1280 5120 16 632M




VIT: Vision Transformer
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VIT: Vision Transformer

* Vision Transformers can exceed accuracy of ResNet.

* But so far only when pre-training on LOTS of data.



VIT: Vision Transformer
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Multi-Modal: Vision and Language
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Appendix A: Tokenization



Tokenization

But how do we decide on the set of words in our vocabulary?

* What about just using characters a/A, b/B, ¢/C, d/D, e/E, ....”? On
their own, they don't have enough meaning...

* We could choose all unigue word strings as delineated by
<space>, but there are far too many of these.

* We could first strip out punctuation and then choose all unique word
strings, but still too many of these.

* Consider all these variations of the same base word love: lovely,
loving, lovingly, lovers, etc. We need to break words down into
pieces—or tokens—to limit the vocabulary size.



Byte Pair Encoding (BPE) Tokenization

But how do we decide on the set of words in our vocabulary?

e |et’s start with our character set a/A, b/B, ¢/C, d/D, e/E, etc. as our
fokens

* We can now create a new token by combining the pair of
existing tokens that is most represented in the corpora.

* We repeat this process until we reach a predetermined limit on the
vocabulary size (i.e., the number of unique tokens)

 Common words will get their own token and less common words will
be broken down into a sequence of tokens.



Byte-Pair Encoding (BPE) Tokens

GPT-3 Codex

Four score and seven years ago our fathers brought forth on this
continent, a new nation, conceived in Liberty, and dedicated to the
proposition that all men are created equal. Now we are engaged in a great
civil war, testing whether that nation, or any nation so conceived and so
dedicated, can long endure. We are met on a great battle-field of that
war. We have come to dedicate a portion of that field, as a final resting
place for those who here gave their lives that that nation might live. It
is altogether fitting and proper that we should do this.

Clear Show example

Tokens Characters

16 556

Four score and seven years ago our fathers brought forth on this
continent, a new nation, conceived in Liberty, and dedicated to the
proposition that all men are created equal. Now we are engaged in a
great civil war, testing whether that nation, or any nation so conceived
and so dedicated, can long endure. We are met on a great battle-field of
that war. We have come to dedicate a portion of that field, as a final
resting place for those who here gave their lives that that nation might
live. It is altogether fitting and proper that we should do this.

TEXT TOKEN IDS



Byte-Pair Encoding (BPE) Tokens

GPT-3 Codex

Pack Double A Battery with Long-lasting Power, Alkaline AA Battery for
Household and Office Devices

Clear Show example

Tokens Characters

38 169

Duracell Coppertop AA Batteries with Power Boost Ingredients, 2 Count
Pack Double A Battery with Long-lasting Power, Alkaline AA Battery for
Household and Office Devices

TEXT



WordPlece Tokenization

WordPiece tokenization is much like BPE, but with a slightly different
merge rule:

It starts with characters a/A, b/B, ¢/C, d/D, e/E, etc. as tokens

We can now create a new token by combining the pair of
existing tokens with the highest score:

frequency of pair

score =
(frequency of first token) X (frequency of second token)

We repeat this process until we reach a predetermined limit on the
vocabulary size (i.e., the number of unique tokens)

This vocabulary of tokens is done before the model training



Appendix B: Common Crawl Dataset



Common Crawl Data

.

BIGPICTURE + THEDATA~ ABOUT~ BLOG CONNECT -~ Donate

Want to use our data?
Get Started

The Common Crawl corpus contains petabytes of data collected over 12
years of web crawling. The corpus contains raw web page data, metadata
extracts and text extracts. Common Crawl data is stored on Amazon Web
Services’ Public Data Sets and cn multiple academic cloud platforms across

the world.

Examples

Access to the Common Crawl corpus hosted by Amazon is free. You may use

Amazon’s cloud platform to run analysis jobs direc:ly against it or you can
download parts or all of it.

You can search for pages in cur corpus using the Common Crawl URL Index.

Tutorials

BIG PICTURE THE DATA ABOUT US CONNECT




