
An Introduction to Attention, Transformers, GPT-x, BERT, and ViT

Transformers



In deep learning, attention is a term used to describe a computational 
mechanism that allows the network to enhance important parts of the data 
and diminish other parts. What is important is learned by the attention 
mechanism from the data and its context.

Attention mechanisms were essentially tacked on to the existing network 
architectures starting around 2014. 

But in 2017, a new fully attention-based architecture was introduced 
called a Transformer. It was built for Machine Translation, but was quickly 
adapted to other NLP tasks. 

This new architecture would give rise to jaw-dropping advances in NLP, 
begin to dominate in Computer Vision, and allow for the emergence of 
multi-modal networks combining text, images, video, audio, etc. 



The Transformer

Vaswani et al. 2017



Attention is All You Need: Transformer

Vaswani et al. 2017



The Transformer is originally designed as an encoder + decoder for machine translation, 
e.g., translating French to English.

The loss is standard cross entropy loss with teacher forcing:
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Transformer: Encoders + Decoders

Encoders Decoders



Transformer: Self-Attention
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Transformer: Encoder + Decoder



Transformer: Encoder



Transformer: Inputs Words Mapped to Vectors

Before going into the network words are tokenized 
and mapped to vectors.



Transformer: Encoder 



Transformer: Encoder 

All word vectors go in at same time!



Transformer: Encoder 



Transformer: Encoder 



Transformer: Encoder 

The output   is a weighted combination of linear projections of 
the inputs  
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He often considered his memories as traffic on 
the congested NYC avenues, with his days at 
Columbia like a truck painted red with all horns 
blaring.



Queries, Keys, and Values

x

For each input word, we get a composite vector that combines 
representations from all words in the sequence through “self-attention.”



Queries, Keys, and Values
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We got here using a single attention “head” and the parameters that 
define it in the matrices  ,   , and  .WQ WK WV
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Multi-Headed Self-Attention
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Multi-Headed Self-Attention



Multi-Headed Self-Attention
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Input embeddings also have positional encodings



Positional encoding is naturally a fcn of position

  p(t) =

p1(t)
p2(t)
p3(t)

⋮
pd(t) dx1

  is the position of the word in the sequence t

  is embedding dimensiond



Transformers use sinusoidal position encodings
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  is the position of the word in the sequence t



Transformers use sinusoidal position encodings

  p(t) =

sin(ω1t)
cos(ω1t)
sin(ω2t)
cos(ω2t)

⋮
sin(ωd/2t)
cos(ωd/2t) dx1

where     ωk =
1

100002k
d

Frequency decreases with increasing  k



Transformers use sinusoidal position encodings

  p(t) =

sin(ω1t)
cos(ω1t)
sin(ω2t)
cos(ω2t)

⋮
sin(ωd/2t)
cos(ωd/2t) dx1

Each   samples the same  
family of sinsusoidal fcns 

p(t)



Sinusoidal Position Encodings
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Embedding Index

Each row is a positional encoding for a given position   t



Residual Connections and Layer Normalizations 
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Residual Connections and Layer Normalizations 

Je suis
Residual connections are used to help gradient flow.



Residual Connections and Layer Normalizations 

Je suis
The outputs of the self-attention and ffnn layers are normalized.



Je suis

Residual Connections and Layer Normalizations 



Transformer: Encoders and Decoders 

Je suis





Training uses “teacher forcing”



GPT-x:: 
Generative Pre-Training Transformer

Radford et al. 2018



GPT-x: Generative Pre-Training Transformer

Decoder onlyRadford et al. 2018

OpenAI



GPT-x: Generative Pre-Training Transformer

Decoder onlyRadford et al. 2018
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Causal Language Model

Consider a text sample as sequence of words/tokens  , a causal 
language model   computes cross entropy loss as:   

w1, . . . , wn
pθ

 L(θ) = −
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log pθ(wt |w1, . . . , wt−1)



GPT-x: Next Word Prediction 



GPT-x: Masked Self-Attention



GPT-3: Training Data



GPT-3: Training Data Samples



GPT-3: Loss Computation



GPT-3: Loss Computation

 L(θ) = − log pθ ( < obey > | < a > , < robot > , < must > )

Uses standard cross-entropy loss: negative log likelihood of the correct token/word  



GPT-3: Model Variants



GPT-3: Model Variants



GPT-3: Open AI API

https://openai.com/api/



BERT:: 
Bidirectional Encoder Representations from Transformers

Devlin et al. 2019



BERT: Bidirectional Encoder 
Representations from Transformers

Encoder only



BERT: Masked Language Model

• Designed to pre-train deep bidirectional representations 
from unlabeled text by jointly conditioning on both left and 
right context in all layers. 

• Trained using a ‘Masked Language Model’ (MLM) pre-
training objective. 

• MLM training is followed by training on ‘Next Sentence 
Prediction’ (NSP) task.



BERT: Pre-training Data

• BooksCorpus (800M Words) 

• English Wikipedia (2500M Words)



BERT: Masked LM

• 15% of the words in the input sequence are masked 
randomly. 

• A chosen token to be masked, is masked with the 
following tokens: 
• [MASK] - 80% of the time. 
• Random Token - 10% of the time. 
• Same Token - 10% of the time. 

• Trained with Cross-Entropy loss.



BERT
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BERT: Next Sentence Prediction

• Sentence A and B chosen as sentence pair. 

• Sentence pairs separated by [SEP] fed to the network. 

• 50% of the time B is the actual next sentence that follows 
A. Labeled as ‘IsNext’. 

• 50% of the time it is a random sentence. Labeled as 
‘NotNext’.



BERT: Architecture



BERT: Architecture

BERT (Base) 
• 12 Transformer Blocks (L=12) 
• 768 dim. Hidden Embed. Size (H=768) 
• 12 Self-Attention Heads (A=12) 
• 110M parameters



BERT: Input Representation



BERT: Feature Extraction

• We can extract features from intermediate layers of the 
model. 

• Although fine-tuning is recommended, features can be 
used without training. 

• Model returns token-level features.



Variants of BERT

I’ve enjoyed preparing these slides, but I’m running out of time.

Maybe I could get a Large Language Model (LLM) like OpenAI’s 
ChatGPT to explain the variants of BERT…



Let’s ask ChatGPT about variants of the BERT model:

ChatGPT on Variants of BERT



Asking ChatGPT more directly in follow up question:



Asking ChatGPT for more detail on RoBERTa vs. BERT:



ChatGPT previous answer was vague, pressing for details:



What about the text-to-text T5 LLM:



Vision Transformer

Dosovitskiy et al. 2020/2021



ViT: Vision Transformer



ViT: Vision Transformer



ViT: Position Encodings

• The sinusoidal position encodings used for previous transformer 
models don’t make sense for patches of images, as this encoding 
does a poor job at encoding the proximity of the patches. 

• For ViTs the position encodings are learnt by the model instead 
of being imposed on the model as before. 



ViT: Vision Transformer



ViT: Vision Transformer



ViT: Vision Transformer

• Vision Transformers can exceed accuracy of ResNet. 

• But so far only when pre-training on LOTS of data. 



ViT: Vision Transformer

More data 



Multi-Modal: Vision and Language



Appendix A: Tokenization



Tokenization
But how do we decide on the set of words in our vocabulary? 

• What about just using characters a/A, b/B, c/C, d/D, e/E, ….? On 
their own, they don’t have enough meaning…  

• We could choose all unique word strings as delineated by 
<space>, but there are far too many of these.  

• We could first strip out punctuation and then choose all unique word 
strings, but still too many of these. 

• Consider all these variations of the same base word love: lovely, 
loving, lovingly, lovers, etc. We need to break words down into 
pieces—or tokens—to limit the vocabulary size. 



Byte Pair Encoding (BPE) Tokenization
But how do we decide on the set of words in our vocabulary? 

• Let’s start with our character set a/A, b/B, c/C, d/D, e/E, etc. as our 
tokens 

• We can now create a new token by combining the pair of 
existing tokens that is most represented in the corpora.  

• We repeat this process until we reach a predetermined limit on the 
vocabulary size (i.e., the number of unique tokens) 

• Common words will get their own token and less common words will 
be broken down into a sequence of tokens. 



Byte-Pair Encoding (BPE) Tokens



Byte-Pair Encoding (BPE) Tokens



WordPiece Tokenization
WordPiece tokenization is much like BPE, but with a slightly different 
merge rule: 

• It starts with characters a/A, b/B, c/C, d/D, e/E, etc. as tokens 

• We can now create a new token by combining the pair of 
existing tokens with the highest score:  

• We repeat this process until we reach a predetermined limit on the 
vocabulary size (i.e., the number of unique tokens) 

• This vocabulary of tokens is done before the model training 

 score =
frequency of pair

(frequency of first token) × (frequency of second token)



Appendix B: Common Crawl Dataset



Common Crawl Data


