
An Introduction to Attention, Transformers, GPT-x, BERT, and ViT

Transformers

In deep learning, attention is a term used to describe a computational
mechanism that allows the network to enhance important parts of the data
and diminish other parts. What is important is learned by the attention
mechanism from the data and its context.

Attention mechanisms were essentially tacked on to the existing network
architectures starting around 2014.

But in 2017, a new fully attention-based architecture was introduced
called a Transformer. It was built for Machine Translation, but was quickly
adapted to other NLP tasks.

This new architecture would give rise to jaw-dropping advances in NLP,
begin to dominate in Computer Vision, and allow for the emergence of
multi-modal networks combining text, images, video, audio, etc.

The Transformer

Vaswani et al. 2017

Attention is All You Need: Transformer

Vaswani et al. 2017

The Transformer is originally designed as an encoder + decoder for machine translation,
e.g., translating French to English.

The loss is standard cross entropy loss with teacher forcing:

 where is the model,

 are words in the source language,

 are words in the target language

L(θ) = −
N

∑
t=1

log pθ(wB
t |wA

1:M, wB
1:t−1)

pθ

wA
1:M wA

1 , . . . , wA
M

wB
1:N wB

1 , . . . , wB
M

Transformer

Transformer: Encoders + Decoders

Encoders Decoders

Transformer: Self-Attention

Transformer: Encoders + Decoders

Transformer: Encoders + Decoders

Transformer: Encoder + Decoder

Transformer: Encoder

Transformer: Inputs Words Mapped to Vectors

Before going into the network words are tokenized
and mapped to vectors.

Transformer: Encoder

Transformer: Encoder

All word vectors go in at same time!

Transformer: Encoder

Transformer: Encoder

Transformer: Encoder

The output is a weighted combination of linear projections of
the inputs

z1
x1, x2, . . .

Queries, Keys, and Values

Je
suis

Je
suis

Je
suis

Queries, Keys, and Values

Je
suis

Je
suis

Je
suis

Queries, Keys, and Values

x

Queries, Keys, and Values

x

 and

 where

z1 =
eβ q1kT

1 v1 + eβ q1kT
2 v2

eβ q1kT
1 + eβ q1kT

2
z2 =

eβ q2kT
1 v1 + eβ q2kT

2 v2

eβ q2kT
1 + eβ q2kT

2

β =
1
dk

−q1−
−q2− −v1−

−v2−
−z1−
−z2−

−
k 1

−
−

k 2
−

He often considered his memories as traffic on
the congested NYC avenues, with his days at
Columbia like a truck painted red with all horns
blaring.

Queries, Keys, and Values

x

For each input word, we get a composite vector that combines
representations from all words in the sequence through “self-attention.”

Queries, Keys, and Values

x

We got here using a single attention “head” and the parameters that
define it in the matrices , , and .WQ WK WV

Queries, Keys, and Values

Je
suis

Je
suis

Je
suis

Multi-Headed Self-Attention

Je
suis

Multi-Headed Self-Attention

Je
suis

Multi-Headed Self-Attention

Multi-Headed Self-Attention

suis
Je

Input embeddings also have positional encodings

Positional encoding is naturally a fcn of position

 p(t) =

p1(t)
p2(t)
p3(t)

⋮
pd(t) dx1

 is the position of the word in the sequence t

 is embedding dimensiond

Transformers use sinusoidal position encodings

 p(t) =

sin(ω1t)
cos(ω1t)
sin(ω2t)
cos(ω2t)

⋮
sin(ωd/2t)
cos(ωd/2t) dx1

where ωk =
1

100002k
d

 is the position of the word in the sequence t

Transformers use sinusoidal position encodings

 p(t) =

sin(ω1t)
cos(ω1t)
sin(ω2t)
cos(ω2t)

⋮
sin(ωd/2t)
cos(ωd/2t) dx1

where ωk =
1

100002k
d

Frequency decreases with increasing k

Transformers use sinusoidal position encodings

 p(t) =

sin(ω1t)
cos(ω1t)
sin(ω2t)
cos(ω2t)

⋮
sin(ωd/2t)
cos(ωd/2t) dx1

Each samples the same
family of sinsusoidal fcns

p(t)

Sinusoidal Position Encodings
Po

si
tio

n

Embedding Index

Each row is a positional encoding for a given position t

Residual Connections and Layer Normalizations

Je suis

Residual Connections and Layer Normalizations

Je suis
Residual connections are used to help gradient flow.

Residual Connections and Layer Normalizations

Je suis
The outputs of the self-attention and ffnn layers are normalized.

Je suis

Residual Connections and Layer Normalizations

Transformer: Encoders and Decoders

Je suis

Training uses “teacher forcing”

GPT-x::
Generative Pre-Training Transformer

Radford et al. 2018

GPT-x: Generative Pre-Training Transformer

Decoder onlyRadford et al. 2018

OpenAI

GPT-x: Generative Pre-Training Transformer

Decoder onlyRadford et al. 2018

X

OpenAI

Causal Language Model

Consider a text sample as sequence of words/tokens , a causal
language model computes cross entropy loss as:

w1, . . . , wn
pθ

 L(θ) = −
N

∑
t=1

log pθ(wt |w1, . . . , wt−1)

GPT-x: Next Word Prediction

GPT-x: Masked Self-Attention

GPT-3: Training Data

GPT-3: Training Data Samples

GPT-3: Loss Computation

GPT-3: Loss Computation

 L(θ) = − log pθ (< obey > | < a > , < robot > , < must >)

Uses standard cross-entropy loss: negative log likelihood of the correct token/word

GPT-3: Model Variants

GPT-3: Model Variants

GPT-3: Open AI API

https://openai.com/api/

BERT::
Bidirectional Encoder Representations from Transformers

Devlin et al. 2019

BERT: Bidirectional Encoder
Representations from Transformers

Encoder only

BERT: Masked Language Model

• Designed to pre-train deep bidirectional representations
from unlabeled text by jointly conditioning on both left and
right context in all layers.

• Trained using a ‘Masked Language Model’ (MLM) pre-
training objective.

• MLM training is followed by training on ‘Next Sentence
Prediction’ (NSP) task.

BERT: Pre-training Data

• BooksCorpus (800M Words)

• English Wikipedia (2500M Words)

BERT: Masked LM

• 15% of the words in the input sequence are masked
randomly.

• A chosen token to be masked, is masked with the
following tokens:
• [MASK] - 80% of the time.
• Random Token - 10% of the time.
• Same Token - 10% of the time.

• Trained with Cross-Entropy loss.

BERT

[CLS]

[CLS]

[CLS]

BERT: Next Sentence Prediction

• Sentence A and B chosen as sentence pair.

• Sentence pairs separated by [SEP] fed to the network.

• 50% of the time B is the actual next sentence that follows
A. Labeled as ‘IsNext’.

• 50% of the time it is a random sentence. Labeled as
‘NotNext’.

BERT: Architecture

BERT: Architecture

BERT (Base)
• 12 Transformer Blocks (L=12)
• 768 dim. Hidden Embed. Size (H=768)
• 12 Self-Attention Heads (A=12)
• 110M parameters

BERT: Input Representation

BERT: Feature Extraction

• We can extract features from intermediate layers of the
model.

• Although fine-tuning is recommended, features can be
used without training.

• Model returns token-level features.

Variants of BERT

I’ve enjoyed preparing these slides, but I’m running out of time.

Maybe I could get a Large Language Model (LLM) like OpenAI’s
ChatGPT to explain the variants of BERT…

Let’s ask ChatGPT about variants of the BERT model:

ChatGPT on Variants of BERT

Asking ChatGPT more directly in follow up question:

Asking ChatGPT for more detail on RoBERTa vs. BERT:

ChatGPT previous answer was vague, pressing for details:

What about the text-to-text T5 LLM:

Vision Transformer

Dosovitskiy et al. 2020/2021

ViT: Vision Transformer

ViT: Vision Transformer

ViT: Position Encodings

• The sinusoidal position encodings used for previous transformer
models don’t make sense for patches of images, as this encoding
does a poor job at encoding the proximity of the patches.

• For ViTs the position encodings are learnt by the model instead
of being imposed on the model as before.

ViT: Vision Transformer

ViT: Vision Transformer

ViT: Vision Transformer

• Vision Transformers can exceed accuracy of ResNet.

• But so far only when pre-training on LOTS of data.

ViT: Vision Transformer

More data

Multi-Modal: Vision and Language

Appendix A: Tokenization

Tokenization
But how do we decide on the set of words in our vocabulary?

• What about just using characters a/A, b/B, c/C, d/D, e/E, ….? On
their own, they don’t have enough meaning…

• We could choose all unique word strings as delineated by
<space>, but there are far too many of these.

• We could first strip out punctuation and then choose all unique word
strings, but still too many of these.

• Consider all these variations of the same base word love: lovely,
loving, lovingly, lovers, etc. We need to break words down into
pieces—or tokens—to limit the vocabulary size.

Byte Pair Encoding (BPE) Tokenization
But how do we decide on the set of words in our vocabulary?

• Let’s start with our character set a/A, b/B, c/C, d/D, e/E, etc. as our
tokens

• We can now create a new token by combining the pair of
existing tokens that is most represented in the corpora.

• We repeat this process until we reach a predetermined limit on the
vocabulary size (i.e., the number of unique tokens)

• Common words will get their own token and less common words will
be broken down into a sequence of tokens.

Byte-Pair Encoding (BPE) Tokens

Byte-Pair Encoding (BPE) Tokens

WordPiece Tokenization
WordPiece tokenization is much like BPE, but with a slightly different
merge rule:

• It starts with characters a/A, b/B, c/C, d/D, e/E, etc. as tokens

• We can now create a new token by combining the pair of
existing tokens with the highest score:

• We repeat this process until we reach a predetermined limit on the
vocabulary size (i.e., the number of unique tokens)

• This vocabulary of tokens is done before the model training

 score =
frequency of pair

(frequency of first token) × (frequency of second token)

Appendix B: Common Crawl Dataset

Common Crawl Data

