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Finally, we get to Images...



What if we just vectorized images
and stuffed these into a MLP?
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Too many weights and connections!

output units
25x25 hidden units

50x50 hidden units
100x100x3 inputs

* This fully connected hidden layer might have 75 million weights!

* And this is just for a thumbnail image.









Remember Hubel and Wiesel's cat!



Early processing in cat visual cortex
looks a lot like convolutions!
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Edges and blobs

e Early stages of processing in cat visual cortex
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s like it is performing convolutions that are

KIng for oriented edges and blobs

» Certain cells are looking for edges with a
particular orientation at a particular spatial
location in the visual field.




Convolution in 1D

measurement kernel
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S(t) = /_ T )kt — Y
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convolution operator



Convolution in 1D
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Discrete Convolution in 1D

measurement  kernel (or filter)

convolution operator



Convolution Is commutative

measurement kernel

\

s(t) = (m = k)(t)
(k xm) (1)

—Zk m(t —r)

Kernel i1s smaller than measurement so better to sum over it!



In practice, don't flip!

measurement kernel

\

s(t) = (m* k)(1)
= m(t+r)k(r)

|

Only need to sum where kernel is is non-zero!



Convolution in 2D

S(i,7) = (I K)(4,7)
= > I(i+m,j+n)K(m,n)




Convolution in 2D

Source pixel

(-1x3)+(0x0)+(1x1)+
(-2x2)+(0x6)+(2x2)+
(-1x2)+(0x4)+(1x1) =-3

Convolution filter
(Sobel Gx)



Convolution with 2D Kernel




Convolution with 2D Kernel




Convolution with 2D Kernel
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Fully Connected (FC) Layer
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outputs

hidden units

Every input unit Is connected to every output unit.



Fully Connected (FC) Layer

outputs

hidden units
inputs

Consider a hidden unit: it connects to all units from the previous layer.



Convolutional Layer: Local Connections

outputs

hidden units
inputs

Here the connections are spatially local and governed by the kernel size.



Convolutional Layer: Local Connections

outputs

hidden units
inputs

Here the connections are spatially local and governed by the kernel size.



Convolutional Layer: Local Connections

outputs

hidden units
inputs

Here the connections are spatially local and governed by the kernel size.



Convolutional Layer: Shared Weights

outputs

hidden units
inputs

The weights for the kernel are shared. They are the same for each position.



Convolution in 2D

Source pixel

(-1x3)+(0x0)+(1x1)+
(-2x2)+(0x6)+(2x2)+
(-1x2)+(0x4)+(1x1) =-3

Convolution filter
(Sobel Gx)



Convolutional Layer: No Padding

outputs

hidden units
INnputs T

If we don’t pad the inputs then the output dim = input dim - kernel size + 1.



Convolutional Layer: Zero Padding
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\ | outputs
‘/ hidden units

inputs

But we can pad the input with zeros to control output size.



Convolutional Layer: Stride

#x

outputs

hidden units

inputs

We can skip input pixels by choosing a stride > 1.



Convolutional Layer: Stride

hidden units
outputs

inputs

We can skip input pixels by choosing a stride > 1.



Convolutional Layer: Stride

/ hidden units outputs

inputs

The output dim = (input dim - kernel size) / stride + 1.



Convolutional Layer: Padding + Stride
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hidden units outputs

inputs

Output dimension = (input dimension - kernel size + 2 * padding) / stride + 1.



In general, when you design a network you
have to choose these numbers so that
everything comes together without dangling
connections.




Rel U used with ConvNets

» Just like with our fully connected layers, for our
convolutional layers we will follow the linear
operation (convolution) with with a non-linear
squashing function.

* Again the fcn to use for now is RelU.

e But we are not done...there's one more thing!



P0o0liNg

We can spatially pool the output from the RelLU to
reduce the size of subsequent layers in our network.

This reduces both computation and the number of
parameters that need to be fit and helps prevent
overfitting.

The pooling operation is often the max value in the
region, but it could be average, or median, etc.

The pooling has a stride associated with it that
determines the downsampling of the input.



Pooling Layer

T
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pooling layer

conv layer outputs

inputs

The pooling layer pools values in regions of the conv layer.



Oops. Just one more thing...Recall



Convolutional Layer: Shared Weights

outputs

hidden units
inputs

The weights for the kernel are shared. They are the same for each position.



Each kernel finds just one type of feature.
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If a kernel shares weights then it can only extract one type of feature.



Why not allow for many kernels and many teatures!

(@A
Q
%

Color images Conv layer features






A Convolutional Net

Let's assume we have 28x28 grayscale images as input
to our conv net. So we will input 28x28x1 samples into the
net.

Let’s fix our kernel size at 5x5 and, to make this simple,
pad our images with zeros and use a stride = 1.

Let's use max pooling on the output, with a 2x2 pooling
region and a stride of 2.

Let's extract 32 features after the first layer.

So the output from this layer will be 14x14x32.



A Convolutional Net

28x28x1 14x14x32



A Convolutional Net

Now let's make a second layer, also convolutional.

Let’s fix our kernel size at 5x5, pad our images
with zeros and use a stride = 1.

Let's use max pooling on the output again, with a
2x2 pooling region and a stride of 2.

Let’'s extract 64 features after the second layer.

So the output from this layer will be 7x7x64.



A Convolutional Net
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A Convolutional Net

o Qur third layer will be a ful

y connected layer

mapping our convolutional features to a 1024
dimensional feature space.
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* S0 the output from this layer will be 1x1x1024.



A Convolutional Net




A Convolutional Net

* Finally, will map this feature space to a 10 class
output space and use a softmax with a MLE/
Ccross entropy loss function.

e And...we're done!



A Convolutional Net
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7x7x64 1x1x10

28x28x1

Parameters = (5x5x1x32+32) + (5x5x32x64+64) + (7x7x64x1024+1024) + (1024x10+10)






