
Deep Learning
for

Computer Vision
Lecture 9: Convolutional Neural Networks (CNNs)

Peter Belhumeur

Computer Science
Columbia University

Finally, we get to images…

What if we just vectorized images
and stuffed these into a MLP?

MLP ?

Too many weights and connections!

100x100x3 inputs

50x50 hidden units

25x25 hidden units
output units

• This fully connected hidden layer might have 75 million weights!

• And this is just for a thumbnail image.

Remember Hubel and Wiesel’s cat!

Early processing in cat visual cortex
looks a lot like convolutions!

Edges and blobs

• Early stages of processing in cat visual cortex
looks like it is performing convolutions that are
looking for oriented edges and blobs

• Certain cells are looking for edges with a
particular orientation at a particular spatial
location in the visual field.

Convolution in 1D

measurement kernel

convolution operator

s(t) =

Z 1

�1
m(r)k(t� r)dr

= (m ⇤ k)(t)

Convolution in 1D

m(t) k(t) s(t)

* =

Discrete Convolution in 1D

measurement kernel (or filter)

convolution operator

s(t) =
1X

�1
m(r)k(t� r)

= (m ⇤ k)(t)

Convolution is commutative

measurement kernel

Kernel is smaller than measurement so better to sum over it!

s(t) = (m ⇤ k)(t)
= (k ⇤m)(t)

=
1X

�1
k(r)m(t� r)

In practice, don’t flip!

measurement kernel

Only need to sum where kernel is is non-zero!

s(t) = (m ⇤ k)(t)

=
X

r

m(t+ r)k(r)

Convolution in 2D

S(i, j) = (I ⇤K)(i, j)

=
X

m

X

n

I(i+m, j + n)K(m,n)

Convolution in 2D

Convolution with 2D Kernel

-1 0 1
-2 0 2
-1 0 1* =

Convolution with 2D Kernel

-1 -1 -1
-1 8 -1
-1 -1 -1* =

Convolution with 2D Kernel

1 2 1
2 4 2
1 2 1* =/ 16

Fully Connected (FC) Layer

Every input unit is connected to every output unit.

inputs

outputs

hidden units

Fully Connected (FC) Layer

Consider a hidden unit: it connects to all units from the previous layer.

inputs

outputs

hidden units

Convolutional Layer: Local Connections

Here the connections are spatially local and governed by the kernel size.

inputs

outputs

hidden units

Convolutional Layer: Local Connections

Here the connections are spatially local and governed by the kernel size.

inputs

outputs

hidden units

Convolutional Layer: Local Connections

Here the connections are spatially local and governed by the kernel size.

inputs

outputs

hidden units

Convolutional Layer: Shared Weights

The weights for the kernel are shared. They are the same for each position.

inputs

outputs

hidden units

Convolution in 2D

Convolutional Layer: No Padding

If we don’t pad the inputs then the output dim = input dim - kernel size + 1.

inputs

outputs

hidden units

Convolutional Layer: Zero Padding

But we can pad the input with zeros to control output size.

inputs

outputs

hidden units

0

0

Convolutional Layer: Stride

We can skip input pixels by choosing a stride > 1.

inputs

outputs

hidden units

Convolutional Layer: Stride

We can skip input pixels by choosing a stride > 1.

inputs

outputshidden units

Convolutional Layer: Stride

The output dim = (input dim - kernel size) / stride + 1.

inputs

outputshidden units

Convolutional Layer: Padding + Stride

Output dimension = (input dimension - kernel size + 2 * padding) / stride + 1.

inputs

outputshidden units

0

0

In general, when you design a network you
have to choose these numbers so that

everything comes together without dangling
connections.

ReLU used with ConvNets

• Just like with our fully connected layers, for our
convolutional layers we will follow the linear
operation (convolution) with with a non-linear
squashing function.

• Again the fcn to use for now is ReLU.

• But we are not done…there’s one more thing!

Pooling
• We can spatially pool the output from the ReLU to

reduce the size of subsequent layers in our network.

• This reduces both computation and the number of
parameters that need to be fit and helps prevent
overfitting.

• The pooling operation is often the max value in the
region, but it could be average, or median, etc.

• The pooling has a stride associated with it that
determines the downsampling of the input.

Pooling Layer

The pooling layer pools values in regions of the conv layer.

inputs

outputsconv layer

0

0

pooling layer

Oops. Just one more thing…Recall

Convolutional Layer: Shared Weights

The weights for the kernel are shared. They are the same for each position.

inputs

outputs

hidden units

Each kernel finds just one type of feature.

-1 0 1
-2 0 2
-1 0 1* =

If a kernel shares weights then it can only extract one type of feature.

-1 -1 -1
-1 8 -1
-1 -1 -1* =

Why not allow for many kernels and many features!

Conv
Layer

Color images Conv layer features

depth
depth

A Convolutional Net
• Let’s assume we have 28x28 grayscale images as input

to our conv net. So we will input 28x28x1 samples into the
net.

• Let’s fix our kernel size at 5x5 and, to make this simple,
pad our images with zeros and use a stride = 1.

• Let’s use max pooling on the output, with a 2x2 pooling
region and a stride of 2.

• Let’s extract 32 features after the first layer.

• So the output from this layer will be 14x14x32.

A Convolutional Net

Conv
Layer

28x28x1 14x14x32

depth

depth

A Convolutional Net
• Now let’s make a second layer, also convolutional.

• Let’s fix our kernel size at 5x5, pad our images
with zeros and use a stride = 1.

• Let’s use max pooling on the output again, with a
2x2 pooling region and a stride of 2.

• Let’s extract 64 features after the second layer.

• So the output from this layer will be 7x7x64.

28x28x1

depth

A Convolutional Net

Conv layer:
k=5x5
stride=1
pad=2
max pool=2
depth=32

14x14x32

depth
Conv layer:

k=5x5
stride=1
pad=2
max pool=2
depth=64

depth

7x7x64

A Convolutional Net

• Our third layer will be a fully connected layer
mapping our convolutional features to a 1024
dimensional feature space.

• This layer is just like any of the hidden layers you
have created before. It is a linear transformation
followed by ReLU.

• So the output from this layer will be 1x1x1024.

A Convolutional Net

28x28x1

depth

Conv layer:
k=5x5
stride=1
pad=2
max pool=2
depth=32

14x14x32

depth
Conv layer:

k=5x5
stride=1
pad=2
max pool=2
depth=64

depth

7x7x64

FC layer:
dim=1024

1x1x1024

A Convolutional Net

• Finally, will map this feature space to a 10 class
output space and use a softmax with a MLE/
cross entropy loss function.

• And…we’re done!

A Convolutional Net

28x28x1

depth

Conv layer:
k=5x5
stride=1
pad=2
max pool=2
depth=32

14x14x32

depth
Conv layer:

k=5x5
stride=1
pad=2
max pool=2
depth=64

depth

7x7x64

FC layer:
dim=1024

1x1x1024

1x1x10

Output
+
Softmax

Parameters = (5x5x1x32+32) + (5x5x32x64+64) + (7x7x64x1024+1024) + (1024x10+10)

