Deep Learning for Computer Vision

Lecture 9: Convolutional Neural Networks (CNNs)

Peter Belhumeur

Computer Science Columbia University Finally, we get to images...

What if we just vectorized images and stuffed these into a MLP?

Too many weights and connections!

- This fully connected hidden layer might have 75 million weights!
- And this is just for a thumbnail image.

Remember Hubel and Wiesel's cat!

Early processing in cat visual cortex looks a lot like convolutions!

Edges and blobs

- Early stages of processing in cat visual cortex looks like it is performing *convolutions* that are looking for oriented edges and blobs
- Certain cells are looking for edges with a particular orientation at a particular spatial location in the visual field.

Convolution in 1D

measurement kernel
$$s(t) = \int_{-\infty}^{\infty} m(r)k(t-r)dr$$

$$= (m*k)(t)$$

convolution operator

Convolution in 1D

Discrete Convolution in 1D

Convolution is commutative

measurement kernel
$$s(t) = (m * k)(t)$$
$$= (k * m)(t)$$
$$= \sum_{-\infty}^{\infty} k(r)m(t - r)$$

Kernel is smaller than measurement so better to sum over it!

In practice, don't flip!

Only need to sum where kernel is is non-zero!

Convolution in 2D

$$S(i,j) = (I * K)(i,j)$$

$$= \sum_{m} \sum_{n} I(i+m,j+n)K(m,n)$$

Convolution in 2D

Convolution with 2D Kernel

1	0	1
-2	0	2
-1	0	1

Convolution with 2D Kernel

-1	-1	-1
-1	8	-1
-1	-1	-1

Convolution with 2D Kernel

	2	
2	4	2
	2	1

/ 16 **=**

Fully Connected (FC) Layer

Every input unit is connected to every output unit.

Fully Connected (FC) Layer

Consider a hidden unit: it connects to all units from the previous layer.

Convolutional Layer: Local Connections

Here the connections are spatially local and governed by the kernel size.

Convolutional Layer: Local Connections

Here the connections are spatially local and governed by the kernel size.

Convolutional Layer: Local Connections

Here the connections are spatially local and governed by the kernel size.

Convolutional Layer: Shared Weights

The weights for the kernel are shared. They are the same for each position.

Convolution in 2D

Convolutional Layer: No Padding

If we don't pad the inputs then the output dim = input dim - kernel size + 1.

Convolutional Layer: Zero Padding

But we can pad the input with zeros to control output size.

Convolutional Layer: Stride

We can skip input pixels by choosing a stride > 1.

Convolutional Layer: Stride

We can skip input pixels by choosing a stride > 1.

Convolutional Layer: Stride

The output dim = (input dim - kernel size) / stride + 1.

Convolutional Layer: Padding + Stride

Output dimension = (input dimension - kernel size + 2 * padding) / stride + 1.

In general, when you design a network you have to choose these numbers so that everything comes together without dangling connections.

ReLU used with ConvNets

- Just like with our fully connected layers, for our convolutional layers we will follow the linear operation (convolution) with with a non-linear squashing function.
- Again the fcn to use for now is ReLU.
- But we are not done...there's one more thing!

Pooling

- We can spatially pool the output from the ReLU to reduce the size of subsequent layers in our network.
- This reduces both computation and the number of parameters that need to be fit and helps prevent overfitting.
- The pooling operation is often the **max** value in the region, but it could be **average**, or **median**, etc.
- The pooling has a stride associated with it that determines the downsampling of the input.

Pooling Layer

The pooling layer pools values in regions of the conv layer.

Oops. Just one more thing...Recall

Convolutional Layer: Shared Weights

The weights for the kernel are shared. They are the same for each position.

Each kernel finds just one type of feature.

If a kernel shares weights then it can only extract one type of feature.

Why not allow for many kernels and many features!

- Let's assume we have 28x28 grayscale images as input to our conv net. So we will input 28x28x1 samples into the net.
- Let's fix our kernel size at 5x5 and, to make this simple, pad our images with zeros and use a stride = 1.
- Let's use max pooling on the output, with a 2x2 pooling region and a stride of 2.
- Let's extract 32 features after the first layer.
- So the output from this layer will be 14x14x32.

28x28x1 14x14x32

- Now let's make a second layer, also convolutional.
- Let's fix our kernel size at 5x5, pad our images with zeros and use a stride = 1.
- Let's use max pooling on the output again, with a 2x2 pooling region and a stride of 2.
- Let's extract 64 features after the second layer.
- So the output from this layer will be 7x7x64.

- Our third layer will be a fully connected layer mapping our convolutional features to a 1024 dimensional feature space.
- This layer is just like any of the hidden layers you have created before. It is a linear transformation followed by ReLU.
- So the output from this layer will be 1x1x1024.

 Finally, will map this feature space to a 10 class output space and use a softmax with a MLE/ cross entropy loss function.

And...we're done!

Parameters = (5x5x1x32+32) + (5x5x32x64+64) + (7x7x64x1024+1024) + (1024x10+10)

