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Finally, we get to images… 



What if we just vectorized images 
and stuffed these into a MLP?

MLP ?



Too many weights and connections!

100x100x3 inputs

50x50 hidden units

25x25 hidden units
output units

• This fully connected hidden layer might have 75 million weights!  

• And this is just for a thumbnail image.







Remember Hubel and Wiesel’s cat!



Early processing in cat visual cortex 
looks a lot like convolutions!



Edges and blobs

• Early stages of processing in cat visual cortex 
looks like it is performing convolutions that are 
looking for oriented edges and blobs 

• Certain cells are looking for edges with a 
particular orientation at a particular spatial 
location in the visual field. 



Convolution in 1D

measurement kernel

convolution operator

s(t) =

Z 1

�1
m(r)k(t� r)dr

= (m ⇤ k)(t)



Convolution in 1D

m(t) k(t) s(t)

* =



Discrete Convolution in 1D

measurement kernel (or filter)

convolution operator

s(t) =
1X

�1
m(r)k(t� r)

= (m ⇤ k)(t)



Convolution is commutative

measurement kernel

Kernel is smaller than measurement so better to sum over it!

s(t) = (m ⇤ k)(t)
= (k ⇤m)(t)

=
1X

�1
k(r)m(t� r)



In practice, don’t flip!

measurement kernel

Only need to sum where kernel is is non-zero!

s(t) = (m ⇤ k)(t)

=
X

r

m(t+ r)k(r)



Convolution in 2D

S(i, j) = (I ⇤K)(i, j)

=
X

m

X

n

I(i+m, j + n)K(m,n)



Convolution in 2D



Convolution with 2D Kernel

-1 0 1
-2 0 2
-1 0 1* =



Convolution with 2D Kernel

-1 -1 -1
-1 8 -1
-1 -1 -1* =



Convolution with 2D Kernel

1 2 1
2 4 2
1 2 1* =/ 16



Fully Connected (FC) Layer

Every input unit is connected to every output unit. 

inputs

outputs

hidden units



Fully Connected (FC) Layer

Consider a hidden unit: it connects to all units from the previous layer. 

inputs

outputs

hidden units



Convolutional Layer: Local Connections

Here the connections are spatially local and governed by the kernel size.

inputs

outputs

hidden units



Convolutional Layer: Local Connections

Here the connections are spatially local and governed by the kernel size.

inputs

outputs

hidden units



Convolutional Layer: Local Connections

Here the connections are spatially local and governed by the kernel size.

inputs

outputs

hidden units



Convolutional Layer: Shared Weights

The weights for the kernel are shared. They are the same for each position.

inputs

outputs

hidden units



Convolution in 2D



Convolutional Layer: No Padding

If we don’t pad the inputs then the output dim = input dim - kernel size + 1.

inputs

outputs

hidden units



Convolutional Layer: Zero Padding

But we can pad the input with zeros to control output size.

inputs

outputs

hidden units

0

0



Convolutional Layer: Stride

We can skip input pixels by choosing a stride > 1.

inputs

outputs

hidden units



Convolutional Layer: Stride

We can skip input pixels by choosing a stride > 1.

inputs

outputshidden units



Convolutional Layer: Stride

The output dim = (input dim - kernel size) / stride + 1.

inputs

outputshidden units



Convolutional Layer: Padding + Stride

Output dimension = (input dimension - kernel size + 2 * padding) / stride + 1.

inputs

outputshidden units

0

0



In general, when you design a network you 
have to choose these numbers so that 

everything comes together without dangling 
connections.



ReLU used with ConvNets

• Just like with our fully connected layers, for our 
convolutional layers we will follow the linear 
operation (convolution) with with a non-linear 
squashing function.  

• Again the fcn to use for now is ReLU. 

• But we are not done…there’s one more thing!



Pooling
• We can spatially pool the output from the ReLU to 

reduce the size of subsequent layers in our network.  

• This reduces both computation and the number of 
parameters that need to be fit and helps prevent 
overfitting. 

• The pooling operation is often the max value in the 
region, but it could be average, or median, etc. 

• The pooling has a stride associated with it that 
determines the downsampling of the input. 



Pooling Layer

The pooling layer pools values in regions of the conv layer. 

inputs

outputsconv layer

0

0

pooling layer



Oops. Just one more thing…Recall



Convolutional Layer: Shared Weights

The weights for the kernel are shared. They are the same for each position.

inputs

outputs

hidden units



Each kernel finds just one type of feature.

-1 0 1
-2 0 2
-1 0 1* =

If a kernel shares weights then it can only extract one type of feature. 

-1 -1 -1
-1 8 -1
-1 -1 -1* =



Why not allow for many kernels and many features!

Conv  
Layer

Color images Conv layer features

depth
depth





A Convolutional Net
• Let’s assume we have 28x28 grayscale images as input 

to our conv net. So we will input 28x28x1 samples into the 
net. 

• Let’s fix our kernel size at 5x5 and, to make this simple, 
pad our images with zeros and use a stride = 1. 

• Let’s use max pooling on the output, with a 2x2 pooling 
region and a stride of 2.  

• Let’s extract 32 features after the first layer. 

• So the output from this layer will be 14x14x32.



A Convolutional Net

Conv  
Layer

28x28x1 14x14x32

depth

depth



A Convolutional Net
• Now let’s make a second layer, also convolutional. 

• Let’s fix our kernel size at 5x5, pad our images 
with zeros and use a stride = 1. 

• Let’s use max pooling on the output again, with a 
2x2 pooling region and a stride of 2.  

• Let’s extract 64 features after the second layer. 

• So the output from this layer will be 7x7x64.



28x28x1

depth

A Convolutional Net

Conv layer: 
k=5x5 
stride=1 
pad=2 
max pool=2 
depth=32  

14x14x32

depth
Conv layer: 

k=5x5 
stride=1 
pad=2 
max pool=2 
depth=64  

depth

7x7x64



A Convolutional Net

• Our third layer will be a fully connected layer 
mapping our convolutional features to a 1024 
dimensional feature space. 

• This layer is just like any of the hidden layers you 
have created before. It is a linear transformation 
followed by ReLU. 

• So the output from this layer will be 1x1x1024.



A Convolutional Net

28x28x1

depth

Conv layer: 
k=5x5 
stride=1 
pad=2 
max pool=2 
depth=32  

14x14x32

depth
Conv layer: 

k=5x5 
stride=1 
pad=2 
max pool=2 
depth=64  

depth

7x7x64

FC layer: 
dim=1024  

1x1x1024



A Convolutional Net

• Finally, will map this feature space to a 10 class 
output space and use a softmax with a MLE/
cross entropy loss function. 

• And…we’re done!



A Convolutional Net

28x28x1

depth

Conv layer: 
k=5x5 
stride=1 
pad=2 
max pool=2 
depth=32  

14x14x32

depth
Conv layer: 

k=5x5 
stride=1 
pad=2 
max pool=2 
depth=64  

depth

7x7x64

FC layer: 
dim=1024  

1x1x1024

1x1x10

Output 
+
Softmax 

Parameters = (5x5x1x32+32) + (5x5x32x64+64) + (7x7x64x1024+1024) + (1024x10+10)




