
Deep Learning
for

Computer Vision
Lecture 8: Optimization

Peter Belhumeur

Computer Science
Columbia University

Gradient-Based Optimization

f(x)

x

local minimum

global minimum

Gradient-Based Optimization

f(x)

x

x0

f(x0 + ✏) ' f(x0) + ✏f

0(x0)

x0 + ✏

f

0 =
df

dx

Gradient Descent

f(x)

x

x0

f(x0 + ✏) ' f(x0) + ✏f

0(x0)

x0 + ✏

Note that is negative, so going in positive direction
decreases the function.

f 0

Critical Points

Maximum Minimum Saddle Point

f(x)

x

f

0(x0) = 0

x0 x0
x0

f

00(x0) < 0 f

00(x0) > 0 f

00(x0) = 0

What if our input is a vector?

• Let

• The directional derivative is the slope of the
function in direction

• We can find this as at

• …or after the chain rule yields

f(x) : Rn ! R

⌘ = 0
@

@⌘
f(x+ ⌘u)

r
x

f(x)T u

u

PLEASE DON’T FORGET

r
x

f(x) =

2

66666664

@f

@x1

@f

@x2

...

@f

@xn

3

77777775

Gradient Descent
• So if we move in direction the slope is

• So in what direction is the slope most negative?

• Clearly in the OPPOSITE direction of the
gradient!

• And if we traverse the fcn this way then we are
doing steepest descent or gradient descent.

r
x

f(x)T uu

xt+1 = xt � ⌘r
x

f(x
t

)

The Hessian Matrix
• Now we just saw that the gradient is the vector

of partial derivatives wrt each of the input
variables

• What if we took second derivatives?

• To do this, we can compute the Jacobian of the
gradient.

• This beast is called the Hessian!

The Hessian Matrix

H(f)(x)i,j =
@

2

@xi@xj
f(x)

The Hessian Matrix
At a critical point

• if all of the eigenvalues of H are positive, then
point is a local minimum.

• if all of the eigenvalues of H are negative, then
the point is a local maximum.

• if one or more are positive and one or more are
negative, then the point is a saddle point.

(r
x

f = 0) :

Taylor Series Expansion

f(xt+1) ⇡ f(xt) + (xt+1 � xt)
Tg +

1

2
(xt+1 � xt)

TH(xt+1 � xt)

xt+1 = xt � ⌘ g

f(xt+1) ⇡ f(xt)� ⌘ gTg +
1

2
⌘2 gTHg

• Taylor series expansion gives us this approximation:

• So if we update as:

• Then we expect this change in the function:

And that’s not all…

f(xt+1) ⇡ f(xt)� ⌘ gTg +
1

2
⌘2 gTHg

• Note that the second order term involving the Hessian
tells us what to expect if we move in the direction of the
opposite gradient.

• If the second order term is positive then the decrease
 in loss is diminished, and if negative it is accelerated:

Optimization for Deep Nets
• Deep learning optimization is a type global optimization where the

optimization is usually expressed as a loss summed over all the
training samples.

• Our goal is not so much find the parameters (or weights) that
minimize the loss but rather to find parameters that produce a
network with the desired behavior.

• Note that there are LOTS of solutions to which our optimization
could converge to—with very different values for the weights—but
each producing a model with very similar behavior on our sample
data.

• For example, consider all the permutations of the weights in a
hidden layer that produce the same outputs.

Optimization for Deep Nets
• Although there is a seemingly endless literature on global

optimization, here we consider only gradient descent-based
methods.

• Our optimizations for deep learning are typically done in very high
dimensional spaces, were the parameters we are optimizing can
run into the millions.

• And for these optimizations, when starting the training from scratch
(i.e., some random initialization of the weights) we will needs LOTS
of labeled training data.

• The process of learning our model from this labeled data is referred
to as supervised learning. Although, supervised learning is more
general than the deep learning algorithms we will consider.

Deterministic vs. Stochastic Methods

• If we performed our gradient descent optimization using all the
training samples to compute each step in our parameter
updates, then our optimization would be deterministic.

• Confusingly, deterministic gradient descent algorithms are
sometimes referred to as batch algorithms

• In contrast, when we use a subset of randomly selected training
samples to compute each update, we call this stochastic
gradient descent and refer to the subset of samples as a mini-
batch.

• And even more confusingly, we often call this mini-batch the
“batch” and refer to its size as the “batch size.”

Deterministic vs. Stochastic Methods

• In general, we will have too many training samples
to use deterministic methods, as it will be too
computationally costly to process all samples with
each update.

• Also, processing a random mini-batch serves as a
type of regularization and helps prevent
overfitting.

• So we will, restrict ourselves to stochastic gradient
descent (SGD) from here on.

Stochastic Gradient Descent
The SGD algorithm could not be any simpler:

1. Choose a learning rate schedule.

2. Choose stopping criterion.

3. Choose batch size.

4. Randomly select a mini-batch.

5. Propagate it forward through the network and then backward through the
network computing the gradient wrt the weights using back propagation.

6. Update the weights by moving in the direction opposite the gradient
where the step size is given by the learning rate.

7. Repeat 4, 5, and 6 until the stopping criterion is satisfied.

Stochastic Gradient Descent
The SGD algorithm could not be any simpler:

1. Choose a learning rate schedule .

2. Choose stopping criterion.

3. Choose batch size .

4. Randomly select mini-batch

5. Forward and backpropagation

6. Update

7. Repeat 4, 5, 6 until the stopping criterion is satisfied.

⌘t
⌘t

m

{x(1),x(2), ...,x(m)}

✓t+1 = ✓t � ⌘t g g =
1

m

mX

i

r✓L(x
(i), yi)

SGD with Momentum

Update rule with momentum:

1. Compute the gradient:

2. Compute the velocity:

3. Update:

⌘t

✓t+1 = ✓t + vt

Note: starts small and increases with time (typically) ↵t
⌘t starts large and decreases with time

vt = ↵t vt�1 � ⌘t g

g =
1

m

mX

i

r✓L(x
(i), yi)

Learning Rate
• Choosing a learning rate has so far eluded science and remains a bit of

an art.

• A typical learning rate schedule might look like:

for

for

with equivalent to 100 - 1000 passes through the data

and

t < ⌧, ⌘t =

✓
1� t

⌧

◆
⌘0 +

t

⌧
⌘⌧

t � ⌧, ⌘t = ⌘⌧

⌧
⌘⌧ = 0.01 ⌘0

Learning Rate

• But this is just one choice for a learning schedule

• One might use an exponential decay

• Or use an adaptive learning rate…

AdaGrad
• Let the learning rate for a model parameter be

inversely proportional to the square root of the
sum of the square of all past values for that model
parameter’s partial derivative.

• So parameters with a history of large partial
derivatives get smaller step sizes, and vice versa.

• Works well sometimes, but large initial gradients
can slow down the learning rates too much.

[Duchi et al. 2011]

AdaGrad

AdaGrad update rule:

1. Compute the gradient:

2. Accumulate:

3. Update parameters:

g =
1

m

mX

i

r✓L(x
(i), yi)

✓t+1 = ✓t �
⌘

� +
p
st

� g

st = st�1 + g � g

RMSProp

• Similar to AdaGrad but introduces an
exponential decay on the accumulation.

• Adds another hyperparameter specifying the
decay rate.

• Frequently used learning rate in practice.

[Hinton 2012]

RMSProp

RMSProp update rule:

1. Compute the gradient:

2. Accumulate:

3. Update parameters:

g =
1

m

mX

i

r✓L(x
(i), yi)

✓t+1 = ✓t �
⌘

� +
p
st

� g

st = � st�1 + (1� �)g � g � < 1

� = 0.9 ⌘ = 0.001Possible defaults:

Adam

• Name comes from “Adaptive moments”

• Typically not too sensitive to choice of
hyperparameters.

• Frequently used learning rate in practice.

[Kingma and Ba 2014]

Adam
Adam update rule:

1. Compute the gradient:

2. Update first moment:

3. Correct bias:

4. Update second moment:

5. Correct bias:

6. Update parameters:

st = �2 st�1 + (1� �2)gt � gt

gt =
1

m

mX

i

r✓L(x
(i), yi)

rt = �1 rt�1 + (1� �1)gt

r̂t =
rt

1� �t
1

ŝt =
st

1� �t
2

✓t+1 = ✓t �
⌘ r̂t

� +
p
ŝt

⌘ = 0.001Possible defaults: �1 = 0.9 �2 = 0.999 � = 10�8

• Training deep nets is often tricky. Updates in weights in one layer
can get compounded as stuff propagates through network.

• A recent major advance in training these networks was to normalize
each batch at each unit of each layer so that it has mean = 0 and
variance = 1.

• This batch normalization is usually done right before a layer’s
nonlinearity.

• Scaling and bias offsets can be added back in after the
normalization as explicitly learned parameters.

• Batch normalization makes training more stable and is now widely
adopted.

[Ioffe and Szegedy, 2015]
Batch Normalization

Batch Normalization

• Let’s say we have the input to a layer
where din is the input dimension and m is the
mini-batch size.

• Let the mini-batch pass through the linear part of
the layer

• Note we don’t have any bias here as this will be
stripped by the normalization.

X[din⇥m]

WT X = X 0
[d

out

⇥m]

Batch Normalization
• At this point in the network—right before the ReLu

—we are going to insert batch normalization.

• To do this, we are going to process every row of
so that is has mean = 0 and variance = 1.

• Note that each unit—row of — is normalized
separately to produce a new matrix

• Finally, we rescale and shift each row by
broadcasting vectors and to produce

X 0

X 0

X 00

�X 00 + �� �

Batch Normalization

µ =
1

m

mX

i=1

X 0
:,i

X 0 = WT X

�2 =
1

m

mX

i=1

(X 0
:,i � µ)2

X 00
:,i =

X 0
:,i � µ

p
�2 + ✏

X 000
:,i = � �X 00

:,i + �

1.

2.

3.

4.

5.

Put input through linearity

Find the mean of each unit

Find the variance of each unit

Normalize each unit

Rescale and shift each unit

Batch Normalization

• Batch normalization just becomes another layer
that can be added to the network.

• The layer is subject to both forward and back
propagation!

• The scaling and offset are learned like all
other weights.

� �

