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Gradient-Based Optimization
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Gradient-Based Optimization
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Gradient Descent   
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Critical Points   
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What if our input is a vector?

• Let  

• The directional derivative is the slope of the 
function in direction  

• We can find this as                        at  

• …or after the chain rule yields  
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Gradient Descent
• So if we move in direction    the slope is  

• So in what direction is the slope most negative?  

• Clearly in the OPPOSITE direction of the 
gradient!  

• And if we traverse the fcn this way then we are 
doing steepest descent or gradient descent.                       
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The Hessian Matrix
• Now we just saw that the gradient is the vector 

of partial derivatives wrt each of the input 
variables 

• What if we took second derivatives?  

• To do this, we can compute the Jacobian of the 
gradient.  

• This beast is called the Hessian!



The Hessian Matrix
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The Hessian Matrix
At a critical point   

• if all of the eigenvalues of H are positive, then 
point is a local minimum. 

• if all of the eigenvalues of H are negative, then 
the point is a local maximum. 

• if one or more are positive and one or more are 
negative, then the point is a saddle point.
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Taylor Series Expansion
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• Taylor series expansion gives us this approximation:

• So if we update as:

• Then we expect this change in the function:



And that’s not all…

f(xt+1) ⇡ f(xt)� ⌘ gTg +
1
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• Note that the second order term involving the Hessian  
tells us what to expect if we move in the direction of the  
opposite gradient.

• If the second order term is positive then the decrease  
   in loss is diminished, and if negative it is accelerated:



Optimization for Deep Nets
• Deep learning optimization is a type global optimization where the 

optimization is usually expressed as a loss summed over all the 
training samples. 

• Our goal is not so much find the parameters (or weights) that 
minimize the loss but rather to find parameters that produce a 
network with the desired behavior.  

• Note that there are LOTS of solutions to which our optimization 
could converge to—with very different values for the weights—but 
each producing a model with very similar behavior on our sample 
data. 

• For example, consider all the permutations of the weights in a 
hidden layer that produce the same outputs.



Optimization for Deep Nets
• Although there is a seemingly endless literature on global 

optimization, here we consider only gradient descent-based 
methods. 

• Our optimizations for deep learning are typically done in very high 
dimensional spaces, were the parameters we are optimizing can 
run into the millions. 

• And for these optimizations, when starting the training from scratch 
(i.e., some random initialization of the weights) we will needs LOTS 
of labeled training data. 

• The process of learning our model from this labeled data is referred 
to as supervised learning. Although, supervised learning is more 
general than the deep learning algorithms we will consider.



Deterministic vs. Stochastic Methods

• If we performed our gradient descent optimization using all the 
training samples to compute each step in our parameter 
updates, then our optimization would be deterministic.  

• Confusingly, deterministic gradient descent algorithms are 
sometimes referred to as batch algorithms 

• In contrast, when we use a subset of randomly selected training 
samples to compute each update, we call this stochastic 
gradient descent and refer to the subset of samples as a mini-
batch. 

• And even more confusingly, we often call this mini-batch the 
“batch” and refer to its size as the “batch size.”



Deterministic vs. Stochastic Methods

• In general, we will have too many training samples 
to use deterministic methods, as it will be too 
computationally costly to process all samples with 
each update. 

• Also, processing a random mini-batch serves as a 
type of regularization and helps prevent 
overfitting.  

• So we will, restrict ourselves to stochastic gradient 
descent (SGD) from here on.



Stochastic Gradient Descent
The SGD algorithm could not be any simpler: 

1. Choose a learning rate schedule. 

2. Choose stopping criterion. 

3. Choose batch size. 

4. Randomly select a mini-batch. 

5. Propagate it forward through the network and then backward through the 
network computing the gradient wrt the weights using back propagation. 

6. Update the weights by moving in the direction opposite the gradient 
where the step size is given by the learning rate. 

7. Repeat 4, 5, and 6 until the stopping criterion is satisfied.



Stochastic Gradient Descent
The SGD algorithm could not be any simpler: 

1. Choose a learning rate schedule     .  

2. Choose stopping criterion. 

3. Choose batch size      .  

4. Randomly select mini-batch 

5. Forward and backpropagation 

6. Update 

7. Repeat 4, 5, 6 until the stopping criterion is satisfied.

⌘t
⌘t

m

{x(1),x(2), ...,x(m)}

✓t+1 = ✓t � ⌘t g g =
1

m

mX

i

r✓L(x
(i), yi)



SGD with Momentum

Update rule with momentum: 

1. Compute the gradient: 

2. Compute the velocity: 

3. Update: 
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Learning Rate
• Choosing a learning rate has so far eluded science and remains a bit of 

an art. 

• A typical learning rate schedule might look like: 

for    

for  

with       equivalent to 100 - 1000 passes through the data  

and  

t < ⌧, ⌘t =

✓
1� t

⌧

◆
⌘0 +

t

⌧
⌘⌧

t � ⌧, ⌘t = ⌘⌧

⌧
⌘⌧ = 0.01 ⌘0



Learning Rate

• But this is just one choice for a learning schedule 

• One might use an exponential decay 

• Or use an adaptive learning rate…



AdaGrad                  
• Let the learning rate for a model parameter be 

inversely proportional to the square root of the 
sum of the square of all past values for that model 
parameter’s partial derivative. 

• So parameters with a history of large partial 
derivatives get smaller step sizes, and vice versa. 

• Works well sometimes, but large initial gradients 
can slow down the learning rates too much.

[Duchi et al. 2011]



AdaGrad

AdaGrad update rule: 

1. Compute the gradient: 

2. Accumulate: 

3. Update parameters: 
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RMSProp               

• Similar to AdaGrad but introduces an 
exponential decay on the accumulation. 

• Adds another hyperparameter specifying the 
decay rate. 

• Frequently used learning rate in practice.

[Hinton 2012]



RMSProp

RMSProp update rule: 

1. Compute the gradient: 

2. Accumulate: 

3. Update parameters: 
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Adam               

• Name comes from “Adaptive moments” 

• Typically not too sensitive to choice of 
hyperparameters.  

• Frequently used learning rate in practice.

[Kingma and Ba 2014]



Adam
Adam update rule: 

1. Compute the gradient: 

2. Update first moment: 

3. Correct bias: 

4. Update second moment: 

5. Correct bias: 

6. Update parameters: 

st = �2 st�1 + (1� �2)gt � gt

gt =
1

m

mX

i

r✓L(x
(i), yi)

rt = �1 rt�1 + (1� �1)gt

r̂t =
rt

1� �t
1
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• Training deep nets is often tricky. Updates in weights in one layer 
can get compounded as stuff propagates through network. 

• A recent major advance in training these networks was to normalize 
each batch at each unit of each layer so that it has mean = 0 and 
variance = 1.  

• This batch normalization is usually done right before a layer’s 
nonlinearity. 

• Scaling and bias offsets can be added back in after the 
normalization as explicitly learned parameters. 

• Batch normalization makes training more stable and is now widely  
adopted.

[Ioffe and Szegedy, 2015] 
Batch Normalization       



Batch Normalization       

• Let’s say we have the input to a layer              
where din is the input dimension and m is the 
mini-batch size. 

• Let the mini-batch pass through the linear part of 
the layer  

• Note we don’t have any bias here as this will be 
stripped by the normalization.  

X[din⇥m]

WT X = X 0
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Batch Normalization       
• At this point in the network—right before the ReLu

—we are going to insert batch normalization. 

• To do this, we are going to process every row of     
so that is has mean = 0 and variance = 1.  

• Note that each unit—row of    — is normalized 
separately to produce a new matrix  

• Finally, we rescale and shift each row by 
broadcasting vectors     and     to produce  
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Batch Normalization       
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Batch Normalization       

• Batch normalization just becomes another layer 
that can be added to the network.  

• The layer is subject to both forward and back 
propagation! 

• The scaling    and offset    are learned like all 
other weights. 
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