Deep Learning for Computer Vision

Lecture 8: Optimization

Peter Belhumeur

Computer Science Columbia University

Gradient-Based Optimization

Gradient-Based Optimization

Gradient Descent

Note that f' is negative, so going in positive direction decreases the function.

Critical Points

$$f'(x_0) = 0$$

Maximum

Minimum

Saddle Point

$$f''(x_0) < 0$$

$$f''(x_0) > 0$$

$$f''(x_0) = 0$$

What if our input is a vector?

- Let $f(\mathbf{x}): \mathbb{R}^n \to \mathbb{R}$
- The *directional derivative* is the slope of the function in direction **u**
- We can find this as $\frac{\partial}{\partial \eta} f(\mathbf{x} + \eta \mathbf{u})$ at $\eta = 0$
- ...or after the chain rule yields $\nabla_{\mathbf{x}} f(\mathbf{x})^T \mathbf{u}$

PLEASE DON'T FORGET

$$\nabla_{\mathbf{x}} f(\mathbf{x}) = \begin{bmatrix} \frac{\partial f}{\partial x_1} \\ \frac{\partial f}{\partial x_2} \\ \dots \end{bmatrix}$$

$$\frac{\partial f}{\partial x_n}$$

Gradient Descent

- So if we move in direction ${\bf u}$ the slope is $\nabla_{{\bf x}} f({\bf x})^T {\bf u}$
- So in what direction is the slope most negative?
- Clearly in the **OPPOSITE** direction of the gradient!
- And if we traverse the fcn this way then we are doing steepest descent or gradient descent.

$$\mathbf{x}_{t+1} = \mathbf{x}_t - \eta \, \nabla_{\mathbf{x}} f(\mathbf{x_t})$$

The Hessian Matrix

- Now we just saw that the gradient is the vector of partial derivatives wrt each of the input variables
- What if we took second derivatives?
- To do this, we can compute the Jacobian of the gradient.
- This beast is called the Hessian!

The Hessian Matrix

$$\mathbf{H}(f)(\mathbf{x})_{i,j} = \frac{\partial^2}{\partial x_i \partial x_j} f(\mathbf{x})$$

The Hessian Matrix

At a critical point $(\nabla_{\mathbf{x}} f = \mathbf{0})$:

- if all of the eigenvalues of H are positive, then point is a local minimum.
- if all of the eigenvalues of H are negative, then the point is a local maximum.
- if one or more are positive and one or more are negative, then the point is a saddle point.

Taylor Series Expansion

Taylor series expansion gives us this approximation:

$$f(\mathbf{x}_{t+1}) \approx f(\mathbf{x}_t) + (\mathbf{x}_{t+1} - \mathbf{x}_t)^T \mathbf{g} + \frac{1}{2} (\mathbf{x}_{t+1} - \mathbf{x}_t)^T \mathbf{H} (\mathbf{x}_{t+1} - \mathbf{x}_t)$$

• So if we update as: $\mathbf{x}_{t+1} = \mathbf{x}_t - \eta \, \mathbf{g}$

Then we expect this change in the function:

$$f(\mathbf{x}_{t+1}) \approx f(\mathbf{x}_t) - \eta \mathbf{g}^T \mathbf{g} + \frac{1}{2} \eta^2 \mathbf{g}^T \mathbf{H} \mathbf{g}$$

And that's not all...

- Note that the second order term involving the Hessian tells us what to expect if we move in the direction of the opposite gradient.
- If the second order term is positive then the decrease in loss is diminished, and if negative it is accelerated:

$$f(\mathbf{x}_{t+1}) \approx f(\mathbf{x}_t) - \eta \mathbf{g}^T \mathbf{g} + \frac{1}{2} \eta^2 \mathbf{g}^T \mathbf{H} \mathbf{g}$$

Optimization for Deep Nets

- Deep learning optimization is a type global optimization where the optimization is usually expressed as a loss summed over all the training samples.
- Our goal is not so much find the parameters (or weights) that minimize the loss but rather to find parameters that produce a network with the desired behavior.
- Note that there are LOTS of solutions to which our optimization could converge to—with very different values for the weights—but each producing a model with very similar behavior on our sample data.
- For example, consider all the permutations of the weights in a hidden layer that produce the same outputs.

Optimization for Deep Nets

- Although there is a seemingly endless literature on global optimization, here we consider only gradient descent-based methods.
- Our optimizations for deep learning are typically done in very high dimensional spaces, were the parameters we are optimizing can run into the millions.
- And for these optimizations, when starting the training from scratch (i.e., some random initialization of the weights) we will needs LOTS of labeled training data.
- The process of learning our model from this labeled data is referred to as *supervised learning*. Although, supervised learning is more general than the deep learning algorithms we will consider.

Deterministic vs. Stochastic Methods

- If we performed our gradient descent optimization using all the training samples to compute each step in our parameter updates, then our optimization would be *deterministic*.
- Confusingly, deterministic gradient descent algorithms are sometimes referred to as batch algorithms
- In contrast, when we use a subset of randomly selected training samples to compute each update, we call this stochastic gradient descent and refer to the subset of samples as a minibatch.
- And even more confusingly, we often call this mini-batch the "batch" and refer to its size as the "batch size."

Deterministic vs. Stochastic Methods

- In general, we will have too many training samples to use deterministic methods, as it will be too computationally costly to process all samples with each update.
- Also, processing a random mini-batch serves as a type of regularization and helps prevent overfitting.
- So we will, restrict ourselves to stochastic gradient descent (SGD) from here on.

Stochastic Gradient Descent

The SGD algorithm could not be any simpler:

- 1. Choose a learning rate schedule.
- 2. Choose stopping criterion.
- 3. Choose batch size.
- 4. Randomly select a mini-batch.
- 5. Propagate it forward through the network and then backward through the network computing the gradient wrt the weights using back propagation.
- 6. Update the weights by moving in the direction opposite the gradient where the step size is given by the learning rate.
- 7. Repeat 4, 5, and 6 until the stopping criterion is satisfied.

Stochastic Gradient Descent

The SGD algorithm could not be any simpler:

- 1. Choose a learning rate schedule η_t .
- 2. Choose stopping criterion.
- 3. Choose batch size m.
- 4. Randomly select mini-batch $\{\mathbf{x}^{(1)}, \mathbf{x}^{(2)}, ..., \mathbf{x}^{(m)}\}$
- 5. Forward and backpropagation

6. Update
$$\theta_{t+1} = \theta_t - \eta_t g$$
 $\mathbf{g} = \frac{1}{m} \sum_{i}^{m} \nabla_{\theta} L(\mathbf{x}^{(i)}, y^i)$

7. Repeat 4, 5, 6 until the stopping criterion is satisfied.

SGD with Momentum

Update rule with momentum:

- 1. Compute the gradient: $\mathbf{g} = \frac{1}{m} \sum_{i}^{m} \nabla_{\theta} L(\mathbf{x}^{(i)}, y^{i})$
- 2. Compute the velocity: $v_t = \alpha_t v_{t-1} \eta_t g$
- 3. Update: $\theta_{t+1} = \theta_t + v_t$

Note: α_t starts small and increases with time (typically) η_t starts large and decreases with time

Learning Rate

- Choosing a learning rate has so far eluded science and remains a bit of an art.
- A typical learning rate schedule might look like:

for
$$t < au, \quad \eta_t = \left(1 - \frac{t}{ au}\right)\eta_0 + \frac{t}{ au}\eta_{ au}$$

for
$$t \geq au, \; \eta_t = \eta_ au$$

with $\, {\cal T} \,$ equivalent to 100 - 1000 passes through the data and $\, \eta_{ au} = 0.01 \, \eta_0 \,$

Learning Rate

- But this is just one choice for a learning schedule
- One might use an exponential decay
- Or use an adaptive learning rate...

AdaGrad [Duchi et al. 2011]

- Let the learning rate for a model parameter be inversely proportional to the square root of the sum of the square of all past values for that model parameter's partial derivative.
- So parameters with a history of large partial derivatives get smaller step sizes, and vice versa.
- Works well sometimes, but large initial gradients can slow down the learning rates too much.

AdaGrad

AdaGrad update rule:

- 1. Compute the gradient: $\mathbf{g} = \frac{1}{m} \sum_{i}^{m} \nabla_{\theta} L(\mathbf{x}^{(i)}, y^{i})$
- 2. Accumulate: $\mathbf{s}_t = \mathbf{s}_{t-1} + \mathbf{g} \odot \mathbf{g}$
- 3. Update parameters: $\theta_{t+1} = \theta_t \frac{\eta}{\delta + \sqrt{\mathbf{s}_t}} \odot \mathbf{g}$

RMSProp [Hinton 2012]

- Similar to AdaGrad but introduces an exponential decay on the accumulation.
- Adds another hyperparameter specifying the decay rate.
- Frequently used learning rate in practice.

RMSProp

RMSProp update rule:

- 1. Compute the gradient: $\mathbf{g} = \frac{1}{m} \sum_{i}^{m} \nabla_{\theta} L(\mathbf{x}^{(i)}, y^i)$
- 2. Accumulate: $\mathbf{s}_t = \beta \, \mathbf{s}_{t-1} + (1 \beta) \, \mathbf{g} \odot \mathbf{g}$ $\beta < 1$
- 3. Update parameters: $\theta_{t+1} = \theta_t \frac{\eta}{\delta + \sqrt{\mathbf{s}_t}} \odot \mathbf{g}$

Possible defaults:
$$\beta = 0.9$$
 $\eta = 0.001$

Adam [Kingma and Ba 2014]

- Name comes from "Adaptive moments"
- Typically not too sensitive to choice of hyperparameters.
- Frequently used learning rate in practice.

Adam

Adam update rule:

- 1. Compute the gradient: $\mathbf{g}_t = \frac{1}{m} \sum_{i}^{m} \nabla_{\theta} L(\mathbf{x}^{(i)}, y^i)$
- 2. Update first moment: $\mathbf{r}_t = \beta_1 \, \mathbf{r}_{t-1} + (1 \beta_1) \mathbf{g}_t$
- 3. Correct bias: $\hat{\mathbf{r}}_t = \frac{\mathbf{r}_t}{1 \beta_1^t}$
- 4. Update second moment: $\mathbf{s}_t = \beta_2 \, \mathbf{s}_{t-1} + (1 \beta_2) \, \mathbf{g}_t \odot \mathbf{g}_t$
- 5. Correct bias: $\hat{\mathbf{s}}_t = \frac{\mathbf{s}_t}{1 \beta_2^t}$
- 6. Update parameters: $\theta_{t+1} = \theta_t \frac{\eta \, \hat{\mathbf{r}}_t}{\delta + \sqrt{\hat{\mathbf{s}}_t}}$

Possible defaults: $\beta_1 = 0.9$ $\beta_2 = 0.999$ $\eta = 0.001$ $\delta = 10^{-8}$

[loffe and Szegedy 2015]

- Training deep nets is often tricky. Updates in weights in one layer can get compounded as stuff propagates through network.
- A recent major advance in training these networks was to normalize each batch at each unit of each layer so that it has mean = 0 and variance = 1.
- This batch normalization is usually done right before a layer's nonlinearity.
- Scaling and bias offsets can be added back in after the normalization as explicitly learned parameters.
- Batch normalization makes training more stable and is now widely adopted.

- Let's say we have the input to a layer $X_{[d_{in} \times m]}$ where d_{in} is the input dimension and m is the mini-batch size.
- Let the mini-batch pass through the linear part of the layer $W^TX = X'_{[d_{out} \times m]}$
- Note we don't have any bias here as this will be stripped by the normalization.

- At this point in the network—right before the ReLu
 —we are going to insert batch normalization.
- To do this, we are going to process every row of X' so that is has mean = 0 and variance = 1.
- Note that each unit—row of X'— is normalized separately to produce a new matrix X''
- Finally, we rescale and shift each row by broadcasting vectors γ and β to produce $\gamma X'' + \beta$

1.
$$X' = W^T X$$

Put input through linearity

2.
$$\mu = \frac{1}{m} \sum_{i=1}^{m} X'_{:,i}$$

Find the mean of each unit

3.
$$\sigma^2 = \frac{1}{m} \sum_{i=1}^{m} (X'_{:,i} - \mu)^2$$

Find the variance of each unit

4.
$$X''_{:,i} = \frac{X'_{:,i} - \mu}{\sqrt{\sigma^2 + \epsilon}}$$

Normalize each unit

5.
$$X'''_{:,i} = \gamma \odot X''_{:,i} + \beta$$

Rescale and shift each unit

- Batch normalization just becomes another layer that can be added to the network.
- The layer is subject to both forward and back propagation!
- The scaling γ and offset β are learned like all other weights.