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We saw last time that we were able to 
approximate a noisy XOR function using a MLP 

with one hidden layer.



But our network struggled to converge and was 
not great at carving up the crossing hourglass 

shape of the data. 



Noisy XOR Data



Nice fit might look like…



Here is what we did…



Eh…Could be better...



Simple MLP 
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Let’s increase the number of hidden units in this layer!





If we add more hidden units…



Done!



So what just happened?!



Universal Approximation Theorem

• tldr: if we have enough hidden units we can approximate 
“any” function! … but we may not be able to train it.


• Universal Approximation Theorem: A feedforward 
neural network with a linear output layer and one or more 
hidden layers with ReLU [Leshno et al. ’93], or sigmoid 
or some other “squashing” activation  function [Hornik et 
al. ’89, Cybenko ’89] can approximate any continuous 
function on a closed and bounded subset of        . This 
holds for functions mapping finite dimensional discrete 
spaces as well.

Rn



Universal Approximation Theorem:  Caveats

• Optimization may fail to find the parameters 
needed represent the desired function.


• Training might choose the wrong function due to 
overfitting.


• The network required to approximate this 
function might be so large as to be infeasible. 



Universal Approximation Theorem:  Caveats

• So even though “any” function can be approximated with a network 
as described with single hidden layer, the network may fail to train, 
fail to generalize, or require so many hidden units as to be infeasible.


• This is both encouraging and discouraging!


• However, [Montufar et al. 2014] showed that deeper networks are 
more efficient in that a deep rectified net can represent functions 
that would require an exponential number of hidden units in a shallow 
one hidden layer network. 


• Deep networks composed of many rectified hidden layers are good 
at approximating functions that can be composed from simpler 
functions. And lots of tasks such as image classification may fit nicely 
into this space.



Multi-Class Classification
• So far we have only looked at binary 

classification problems for which we need to find 
a single separating surface or single 
discriminating function to predict the two classes 
from input data.


• What happens when we have n classes? In 
general you only need n - 1 discriminate 
functions.  But in practice, it is simpler to use n 
and train n one-vs-all classifiers.



Binary Classification



One vs. All Classification



Multi-Class Classification
• In the binary case, we used a logistic sigmoid function 

to assign probabilities to the predictions:  

• In the multi-class case, we can generalize this using 
the softmax function to estimate  


P (y = 1|x)

P (y = i|x)

P (y = i|x) = eziP
j e

zj
Softmax



Recall Loss Layer in MLP in Binary Case
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Recall Loss Layer in MLP in Binary Case
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Softmax Loss Layer
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Backprop with Softmax Output
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Backprop with Softmax Output
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Backprop with Softmax Output

x h

y

L

c

hidden layer

P

b

z

W Wo

rWL = x(f �rhL)
T

rcL = f �rhL





Training Samples for 3 Class Problem



Decision Regions: 16 Hidden Units



Decision Regions: 512 Hidden Units



Regularization



The goal of regularization is to prevent overfitting 
the training data with the hope that this improves 
generalization, i.e., the ability to correctly handle 
data that the network has not trained on.



Regularization for MLP
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     Regularization for MLP
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Decision Regions: 4800 HUs and          � = 0



Decision Regions: 4800 HUs and          � = 0.015



Decision Regions: 4800 HUs and          � = 0.1



     Regularization for MLP
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     vs           RegularizationL1 L2

Note gradient behavior close to 0!

||x||

||x||2



     vs           RegularizationL1 L2

Note gradient behavior close to 0!

||x||

||x||2



     Regularization

• L1 produces solutions that are sparse compared 
with L2.


• This means most weights are driven to zero. 
Why? The gradient of this regularizer does not 
flatten out as it approaches zero and pushes 
unneeded weights down.


• This can be used as a method of feature 
selection.

L1





Regularization: Bagging

• Train a model by random sampling with 
replacement (re-use training samples) 


• Repeat this problem k times to produce k 
separate models


• Have all models vote on output for test samples

[Breiman, 1994]



Ensemble Methods
• Bagging involves model averaging which is a type of 

what are called ensemble methods.


• Most model winners in ML competitions use an 
ensemble method.


• In practice ensemble methods have greater memory 
requirements and are slower as they require multiple 
models to be trained and evaluated.


• Great for getting your accuracy up a few % points but 
not necessarily best for deploying at scale.



Possible Ensemble Method
• What if you made a smaller network using fewer input and 

hidden units. 


• We could do this by randomly removing some of the units, 
say with probability 0.2 for input units and probability 0.5 
for hidden units.


• Let’s keep all output units as these map to specific 
categories that we are trying to learn.


• Let’s make LOTS of these smaller networks, half-size 
networks and then combine them at the end as one 
ensemble method.



       Dropout  [Srivastava et al., 2014]                 

• For every training batch through the network, dropout  0.5 of 
hidden units and 0.2 of input units. You can choose the 
probabilities as you like…


• Train as you normally would using SGD, but each time you 
impose a random dropout that essentially trains for that batch 
on a random sub-network.


• When you are done training, you use for your model the 
complete network with all its learned weights, except multiply the 
weight by the probability of including its parent unit.


• This is called the weight scaling inference rule. [Hinton et al., 
2012]







Early Stopping
• Typical deep neural networks have millions and 

millions of weights!


• With so many parameters at their disposal how to 
we prevent them from overfitting?


• Clearly we can use some of the other regularization 
techniques that have been mentioned…


• …but given enough training time, our network will 
eventually start to overfit the data.



The goal of regularization is to prevent overfitting 
the training data with the hope that this improves 
generalization, i.e., the ability to correctly handle 
data that the network has not trained on.

DON’T EVER FORGET!

DON’T EVER FORGET!

DON’T EVER FORGET!

DON’T EVER FORGET!

DON’T EVER FORGET!

DON’T EVER FORGET!



Training and Validation Sets

Labeled Data

Training Data Validation Data



Training and Validation Sets

Labeled Data

Training Data Validation Data

NEVER TRAIN ON YOUR VALIDATION SET!



Training and Validation Sets
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Training and Validation Sets
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Training and Validation Sets

Labeled Data

Training Data Validation Data

NEVER TRAIN ON YOUR VALIDATION SET!



Training, Testing, and Validation Sets

Labeled Data

Training Data Validation Data

NEVER TRAIN ON YOUR VALIDATION SET!

Test Data



Early Stopping

iterations !
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More Data / Data Augmentation

• Possibly the best way to prevent overfitting is to get more 
training data!


• When this isn’t possible, you can often perform data 
augmentation where training samples are randomly 
perturbed or jittered to produce more training samples.


• This is usually easy to do when the samples are images 
and one can crop, rotate, etc. the samples to produce 
new samples.


• And if the data can be generated synthetically using 
computer graphics, we can produce an endless supply.


