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Feedforward Networks

e Let y= f"(x) be some function we are trying to
approximate

* This function could be assignment of an input to
a category as in a classifier

* | et afeedforward network approximate this
mapping y = f(x;0) by learning parameters ¢




Feedforward Networks

Feedforward networks have NO feedback

hese networks can be represented as directed
acyclic graphs describing the composition of
functions

These networks are composed of functions
represented as “layers” f(x) = I*(I*(I*(x)))

The length of the chain of compositions gives the
“depth” of the network



Feedforward Networks

e The functions defining the layers have been influenced by
neuroscience

* QOur training dictates the values to be produced by the
output layer and the weights are chosen accordingly

e The weights for intermediate or “hidden” |layers are
learned and not specified directly

e You can think of the network as mapping the raw input
space x to some transformed feature space ¢(x) where
the samples are better behaved. For instance, for a
classifier we would like them to be linearly separable.



Feedforward Networks

» The goal of the feedforward network for classification is
then to learn this mapping:

y=f(x;0,w) = p(x;0)" w

 |f this mapping is simply the identity then our network is
linear and this certainly not going to work for most
computer vision problems.

e Consider approximating something as simple as the XOR
function with a linear network...



2D Linear Network




XOR









Let’'s show this by trying fit a linear network to
this data and choose the loss function to be
mean squared error (MSE).




XOR with Linear Network

fx;w,b) =w'x+b

. 1
w,b = argmax L(w,b) = 0, 5
w,b



There is no way to approximate the XOR
function with this single layer linear network!



What if we introduced a hidden layer and chose
this layer to be linear?



Linear Network with Hidden Layer




Linear Network with Hidden Layer




Network notation is cumbersome. Let's simplity.



‘Deep” Network with Hidden Layer

x —— h " y

h=gW'x+c)

y=wlh+b
—wligWhx+c)+b



Let's choose g to be a non-linear function as
inear did not work for us before!



Rectified Linear Unit RelLU

g(z) = max(0, z)
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Hidden Layer with RelLU

h = max(0, W'x + c)

y=w' h+0b
= w! max(0,W'x +c)+b




XOR and Simple Non-Linear Network
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XOR and Simple Non-Linear Network

Then I :_ o112
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Transformed Feature Space: h = ¢(x)
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Transformed Feature Space: h = ¢(x)
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Non-linear mappings are f#$king awesome!




For this problem, we approximated the XOR
where desired outputs of O and 1.



Now that we have a more powerful underlying
machine, let's revisit our world of binary
classifiers. Recall our logistic regression from
before!




Let's use our logistic regression, but stick it on
the top of our little non-linear network.




Simple Non-linear Network

O'_
h = max(0, W'x + c)
z=w h+b |
o(r) = —
P(y =1|x;0) = o(z) L+e

Sigmoid



We need a cost (loss) function to optimize.



Common Loss Function for Binary Classifier

P(ylx;0) = o((2y — 1)z)
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o(r) Sigmoid

L(0) = —log P(y|x;0)

= —logo((2y — 1)z)
= (((1 —2y)z)

((r)=log(l1+€")  Softplus



Sigmoid and Friend...Softplus
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Keep in mind this is happening for all
samples...

0) = P(yi|xi;0)
argr@nax P({y; }{x;:};0) = argrenaxil;[l

= argmin — log H P(y;|x;;0)
0 i=1

= argmin Z —log P(y;|x:;6)
O =l



Common Loss Function for Binary Classifier

L(0) = —log P(y|x;0)
= —logo((2y — 1))
(1 —-2y)z)  Softplus
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Common Loss Function for Binary Classifier

L(0) = —log P(y|x; 0)

= —logo((2y —1)z)
= (((1 —2y)2)

((r)=log(1+e")  Softplus

e Softplus has strong gradients when training sample is
misclassified. It does not saturate.

o Softplus is differentiable everywhere.



Let's make a more descriptive version of the
computational graph for this network and then
use backprop to compute the gradient with
respect to the network parameters.




Forward Propagation

hidde:n layer

input_ ayer Iossilayer



Forward Propagation

w = Wk



Forward Propagation
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Forward Propagation

h = max(0, u'?)



Forward Propagation

u® =wTh



Forward Propagation

z=u® +b



Forward Propagation

u = (1 —2y)z



Forward Propagation

L= ()



Back-Propagation




Back-Propagation
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Back-Propagation
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Back-Propagation
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Back-Propagation




Back-Propagation
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Back-Propagation
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Jacoblans and more...
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Back-Propagation
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Rectified Linear Unit RelLU

A

g(z) = max(0, z)

> 2



Back-Propagation
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Back-Propagation




Back-Propagation
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Back-Propagation

Vel =o(u*)(1 —2y)f(u'?) ow




Back-Propagation
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Back-Propagation
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Here is mapping from R**? — R?

w) = wTx




































Tensors! .. WTF?

* |[n physics tensors have specitfic roles and rules.

* |In ML we usually think of tensors as a
generalization of vectors and matrices.

* SO we use tensors to organize data into some
grid form. A vector has 1 index, a matrix has 2
iIndices, and tensors can be used when more
iIndices are needed.



lensors

Let X be a tensor.

Even though X may have any number of indices we
can think of this tuple of indices as simply i

So an element of our tensor can be written X

And the gradient of z wrt to tensor Xis Vxz



lensors

e SO0ifY =g(X)and z=AY) then

0z
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Back-Propagation
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Here is mapping from R**? — R?

w) = wTx



Back-Propagation

VL = Y (kugv) (Vaw L),



Back-Propagation

Vi L = o@®)(1 — 2p)x (F(u®) © w)T



So let’'s collapse this diagram into functional
layers.



Simple MLP
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Simple MLP

inpuf layer hidd:en layer outpLét layer Ioss:layer



Simple MLP
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Simple MLP
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Simple MLP

hiddén layer
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Rectified Linear Unit RelLU
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g(z) = max(0, z)
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