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The Perceptron
[Rosenblatt 57]
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Feedforward Networks

• Let                    be some function we are trying to 
approximate


• This function could be assignment of an input to 
a category as in a classifier


• Let a feedforward network approximate this 
mapping                    by learning parameters    

y = f⇤(x)

y = f(x; ✓) ✓



Feedforward Networks
• Feedforward networks have NO feedback


• These networks can be represented as directed 
acyclic graphs describing the composition of 
functions


• These networks are composed of functions 
represented as “layers” 


• The length of the chain of compositions gives the 
“depth” of the network

f(x) = l3(l2(l1(x)))



Feedforward Networks
• The functions defining the layers have been influenced by 

neuroscience 


• Our training dictates the values to be produced by the 
output layer and the weights are chosen accordingly


• The weights for intermediate or “hidden” layers are 
learned and not specified directly 


• You can think of the network as mapping the raw input 
space x to some transformed feature space         where 
the samples are better behaved. For instance, for a 
classifier we would like them to be linearly separable. 

�(x)



Feedforward Networks
• The goal of the feedforward network for classification is 

then to learn this mapping:


• If this mapping is simply the identity then our network is 
linear and this certainly not going to work for most 
computer vision problems.


• Consider approximating something as simple as the XOR 
function with a linear network…

y = f(x; ✓,w) = �(x; ✓)Tw



2D Linear Network
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Let’s show this by trying fit a linear network to 
this data and choose the loss function to be 

mean squared error (MSE).



XOR with Linear Network

f(x;w, b) = wTx+ b

ŵ, b̂ = argmax
w,b

L(w, b) = 0,
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There is no way to approximate the XOR 
function with this single layer linear network!



What if we introduced a hidden layer and chose  
this layer to be linear?



Linear Network with Hidden Layer
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Linear Network with Hidden Layer
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Network notation is cumbersome. Let’s simplify. 



“Deep” Network with Hidden Layer

x h
W w y

h = g(WTx+ c)

y = wTh+ b

= wT g(WTx+ c) + b



Let’s choose g to be a non-linear function as 
linear did not work for us before!



Rectified Linear Unit ReLU

g(z) = max(0, z)

0

0
z



Hidden Layer with ReLU

x h
W w y

y = wTh+ b

= wT max(0,WTx+ c) + b

h = max(0,WTx+ c)



XOR and Simple Non-Linear Network 
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XOR and Simple Non-Linear Network 
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XOR and Simple Non-Linear Network 
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Non-linear mappings are f#$king awesome!



For this problem, we approximated the XOR 
where desired outputs of 0 and 1.



Now that we have a more powerful underlying 
machine, let’s revisit our world of binary 

classifiers.  Recall our logistic regression from 
before!



Let’s use our logistic regression, but stick it on 
the top of our little non-linear network.



Simple Non-linear Network
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We need a cost (loss) function to optimize.



Common Loss Function for Binary Classifier 

Sigmoid

L(✓) = � logP (y|x)
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P (y|x; ✓) = �((2y � 1)z)

L(✓) = � logP (y|x; ✓)



Sigmoid and Friend…Softplus 

Sigmoid

�(r) =
1

1 + e�r

Softplus

⇣(r) = log(1 + er)

' max(0, r)



Keep in mind this is happening for all 
samples…

argmax
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Common Loss Function for Binary Classifier 
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Common Loss Function for Binary Classifier 
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Common Loss Function for Binary Classifier 

⇣(r) = log(1 + er) Softplus

• Softplus has strong gradients when training sample is 
misclassified. It does not saturate.


• Softplus is differentiable everywhere.

L(✓) = � logP (y|x)
= � log �((2y � 1)z)

= ⇣((1� 2y)z)

L(✓) = � logP (y|x; ✓)



Let’s make a more descriptive version of the 
computational graph for this network and then 
use backprop to compute the gradient with 
respect to the network parameters. 
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Forward Propagation 
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Forward Propagation 
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Forward Propagation 
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Forward Propagation 
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Forward Propagation 
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Forward Propagation 
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Forward Propagation 
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Back-Propagation 
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Back-Propagation 
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Back-Propagation 
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Back-Propagation 
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Back-Propagation 
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Back-Propagation 
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Back-Propagation 
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Jacobians and more…
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Back-Propagation 
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Rectified Linear Unit ReLU
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Back-Propagation 
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Back-Propagation 
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Back-Propagation 
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Back-Propagation 
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Tensors! …WTF?

• In physics tensors have specific roles and rules.


• In ML we usually think of tensors as a 
generalization of vectors and matrices.


• So we use tensors to organize data into some 
grid form. A vector has 1 index, a matrix has 2 
indices, and tensors can be used when more 
indices are needed.



Tensors

• Let X be a tensor. 


• Even though X may have any number of indices we 
can think of this tuple of indices as simply i

• So an element of our tensor can be written Xi

• And the gradient of z wrt to tensor X is rXz



Tensors

• So if Y = g(X) and z = f(Y) then 
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Back-Propagation 
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Back-Propagation 
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Back-Propagation 
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So let’s collapse this diagram into functional 
layers.



Simple MLP 
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Simple MLP 
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Simple MLP 
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Simple MLP 
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Rectified Linear Unit ReLU
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