
Deep Learning

for

Computer Vision
Lecture 6: The Perceptron, the XOR Challenge, Going Deep,

Love for Feed Forward Networks, Jacobians, and Tensors

Peter Belhumeur

Computer Science

Columbia University

The Perceptron
[Rosenblatt 57]

x1
x2

xd

1
X

b
w1
w2

wd

fS

f(x;w) = S(wTx+ b) =
1

1 + e�w1x1�...�wdxd+b

S(z) =
1

1 + e�z

P (y = 1|x,w, b)

Feedforward Networks

• Let be some function we are trying to
approximate

• This function could be assignment of an input to
a category as in a classifier

• Let a feedforward network approximate this
mapping by learning parameters

y = f⇤(x)

y = f(x; ✓) ✓

Feedforward Networks
• Feedforward networks have NO feedback

• These networks can be represented as directed
acyclic graphs describing the composition of
functions

• These networks are composed of functions
represented as “layers”

• The length of the chain of compositions gives the
“depth” of the network

f(x) = l3(l2(l1(x)))

Feedforward Networks
• The functions defining the layers have been influenced by

neuroscience

• Our training dictates the values to be produced by the
output layer and the weights are chosen accordingly

• The weights for intermediate or “hidden” layers are
learned and not specified directly

• You can think of the network as mapping the raw input
space x to some transformed feature space where
the samples are better behaved. For instance, for a
classifier we would like them to be linearly separable.

�(x)

Feedforward Networks
• The goal of the feedforward network for classification is

then to learn this mapping:

• If this mapping is simply the identity then our network is
linear and this certainly not going to work for most
computer vision problems.

• Consider approximating something as simple as the XOR
function with a linear network…

y = f(x; ✓,w) = �(x; ✓)Tw

2D Linear Network

x1

x2

1
X

b

w1

w2

f

f(x;w, b) = wTx+ b

+

-

-

+

XOR

+

-

-

+

XOR

w X

+

-

-

+

XOR

w X

Let’s show this by trying fit a linear network to
this data and choose the loss function to be

mean squared error (MSE).

XOR with Linear Network

f(x;w, b) = wTx+ b

ŵ, b̂ = argmax
w,b

L(w, b) = 0,
1

2

L(w, b) =
1

4

X

x2X
(f⇤(x)� f(x;w, b))2

There is no way to approximate the XOR
function with this single layer linear network!

What if we introduced a hidden layer and chose
this layer to be linear?

Linear Network with Hidden Layer

x1

x2

1
X

b

w1

w2

f

1

X

X

c1

W22

c2
W11

W12

W21

f(x;W, c,w, b) = wT (Wx+ c) + b

= w̃Tx+ b̃

Linear Network with Hidden Layer

x1

x2

1
X

b

w1

w2

f

1

X

X

c1

W22

c2
W11

W12

W21

Xf(x;W, c,w, b) = wT (WTx+ c) + b

= w̃Tx+ b̃

Network notation is cumbersome. Let’s simplify.

“Deep” Network with Hidden Layer

x h
W w y

h = g(WTx+ c)

y = wTh+ b

= wT g(WTx+ c) + b

Let’s choose g to be a non-linear function as
linear did not work for us before!

Rectified Linear Unit ReLU

g(z) = max(0, z)

0

0
z

Hidden Layer with ReLU

x h
W w y

y = wTh+ b

= wT max(0,WTx+ c) + b

h = max(0,WTx+ c)

XOR and Simple Non-Linear Network

W =


1 1
1 1

�
Let c =


0
�1

�
w =


1
�2

�
b = 0

X =


0 1 0 1
0 0 1 1

�
Our XOR samples are

XOR and Simple Non-Linear Network

Then WTX + c =


0 1 1 2
�1 0 0 1

�

y = wT max(0,WTx+ c) + b =
⇥
0 1 1 0

⇤

h = max(0,WTX + c) =


0 1 1 2
0 0 0 1

�

XOR and Simple Non-Linear Network

Then WTX + c =


0 1 1 2
�1 0 0 1

�

y = wT max(0,WTx+ c) + b =
⇥
0 1 1 0

⇤

h = max(0,WTX + c) =


0 1 1 2
0 0 0 1

�

+

-

-

+

Input Feature Space
x2

x1

+
-

-

Transformed Feature Space:
h2

h1

h = �(x)

+
-

-

Transformed Feature Space:
h2

h1w

h = �(x)

Non-linear mappings are f#$king awesome!

For this problem, we approximated the XOR
where desired outputs of 0 and 1.

Now that we have a more powerful underlying
machine, let’s revisit our world of binary

classifiers. Recall our logistic regression from
before!

Let’s use our logistic regression, but stick it on
the top of our little non-linear network.

Simple Non-linear Network

x h
W w

h = max(0,WTx+ c)

z

�

z = wTh+ b
Sigmoid�(r) =

1

1 + e�r
P (y = 1|x; ✓) = �(z)

P (y = 0|x; ✓) = �(�z) ✓ = {W, c,w, b}

We need a cost (loss) function to optimize.

Common Loss Function for Binary Classifier

Sigmoid

L(✓) = � logP (y|x)
= � log �((2y � 1)z)

= ⇣((1� 2y)z)

�(r) =
1

1 + e�r

⇣(r) = log(1 + er) Softplus

P (y|x; ✓) = �((2y � 1)z)

L(✓) = � logP (y|x; ✓)

Sigmoid and Friend…Softplus

Sigmoid

�(r) =
1

1 + e�r

Softplus

⇣(r) = log(1 + er)

' max(0, r)

Keep in mind this is happening for all
samples…

argmax
✓

P ({yi}|{xi}; ✓) = argmax
✓

nY

i=1

P (yi|xi; ✓)

= argmin
✓

� log
nY

i=1

P (yi|xi; ✓)

= argmin
✓

nX

i=1

� logP (yi|xi; ✓)

Common Loss Function for Binary Classifier

x h
W w

y

z L

Softplus

L(✓) = � logP (y|x)
= � log �((2y � 1)z)

= ⇣((1� 2y)z)

L(✓) = � logP (y|x; ✓)

Common Loss Function for Binary Classifier

x h
W w

y

z L

Softplus

L(✓) = � logP (y|x)
= � log �((2y � 1)z)

= ⇣((1� 2y)z)

L(✓) = � logP (y|x; ✓)

Common Loss Function for Binary Classifier

⇣(r) = log(1 + er) Softplus

• Softplus has strong gradients when training sample is
misclassified. It does not saturate.

• Softplus is differentiable everywhere.

L(✓) = � logP (y|x)
= � log �((2y � 1)z)

= ⇣((1� 2y)z)

L(✓) = � logP (y|x; ✓)

Let’s make a more descriptive version of the
computational graph for this network and then
use backprop to compute the gradient with
respect to the network parameters.

Forward Propagation

x

h

y

L

W

u(1)

u(2)+

⇥

c w

u(3)

b

⇥
+ z u(4)

hidden layer

loss layerinput layer

Forward Propagation

x

h

y

L

W

u(1)

u(2)+

⇥

c w

u(3)

b

⇥
+ z u(4)

u(1) = WTx

Forward Propagation

x

h

y

L

W

u(1)

u(2)+

⇥

c w

u(3)

b

⇥
+ z u(4)

u(2) = u(1) + c

Forward Propagation

x

h

y

L

W

u(1)

u(2)+

⇥

c w

u(3)

b

⇥
+ z u(4)

h = max(0,u(2))

Forward Propagation

x

h

y

L

W

u(1)

u(2)+

⇥

c w

u(3)

b

⇥
+ z u(4)

u(3) = wTh

Forward Propagation

x

h

y

L

W

u(1)

u(2)+

⇥

c w

u(3)

b

⇥
+ z u(4)

z = u(3) + b

Forward Propagation

x

h

y

L

W

u(1)

u(2)+

⇥

c w

u(3)

b

⇥
+ z u(4)

u(4) = (1� 2y)z

Forward Propagation

x

h

y

L

W

u(1)

u(2)+

⇥

c w

u(3)

b

⇥
+ z u(4)

L = ⇣(u(4))

Back-Propagation

x

h

y

L

W

u(1)

u(2)+

⇥

c w

u(3)

b

⇥
+ z u(4)

@L

@u(4)
= �(u(4))

Back-Propagation

x

h

y

L

W

u(1)

u(2)+

⇥

c w

u(3)

b

⇥
+ z u(4)

@L

@z
=

@L

@u(4)

@u(4)

@z
= �(u(4))(1� 2y)

Back-Propagation

x

h

y

L

W

u(1)

u(2)+

⇥

c w

u(3)

b

⇥
+ z u(4)

@L

@b
=

@L

@z

@z

@b
= �(u(4))(1� 2y)

Back-Propagation

x

h

y

L

W

u(1)

u(2)+

⇥

c w

u(3)

b

⇥
+ z u(4)

@L

@u(3)
=

@L

@z

@z

@u(3)
= �(u(4))(1� 2y)(1)

Back-Propagation

x

h

y

L

W

u(1)

u(2)+

⇥

c w

u(3)

b

⇥
+ z u(4)

rwL =
@L

@u(3)
rwu(3) = �(u(4))(1� 2y)h

Back-Propagation

x

h

y

L

W

u(1)

u(2)+

⇥

c w

u(3)

b

⇥
+ z u(4)

rhL =
@L

@u(3)
rhu

(3) = �(u(4))(1� 2y)w

Back-Propagation

x

h

y

L

W

u(1)

u(2)+

⇥

c w

u(3)

b

⇥
+ z u(4)

Here we have a mapping from R2 ! R2

R2 R2

h = max(0,u(2))

Jacobians and more…

y = g(x) z = f(y)
rxz =

✓
@y

@x

◆T

ryz

@y

@x
=

2

666664

@y1

@x1

@y1

@x2
... @y1

@xm

@y2

@x1

@y2

@x2
... @y2

@xm

...
@yn

@x1

@yn

@x2
... @yn

@xm

3

777775

n⇥m

=)

where the Jacobian

R RnRn Rm

Back-Propagation

x

h

y

L

W

u(1)

u(2)+

⇥

c w

u(3)

b

⇥
+ z u(4)

Here we have a mapping from R2 ! R2

R2 R2

h = max(0,u(2))

@h

@u(2)
=

2

64

@h1

@u(2)
1

@h1

@u(2)
2

@h2

@u(2)
1

@h2

@u(2)
2

3

75 =

2

64

@h1

@u(2)
1

0

0 @h2

@u(2)
2

3

75

Rectified Linear Unit ReLU

g(z) = max(0, z)

0

0
z

dg

dz
= 0

dg

dz
= 1 Let f =

dg

dz

 “ ”

Back-Propagation

x

h

y

L

W

u(1)

u(2)+

⇥

c w

u(3)

b

⇥
+ z u(4)

ru(2)L =

✓
@h

@u(2)

◆T

rhL = �(u(4))(1� 2y)f(u(2))�w

Back-Propagation

x

h

y

L

W

u(1)

u(2)+

⇥

c w

u(3)

b

⇥
+ z u(4)

rcL =

✓
@u(2)

@c

◆T

ru(2)L

Back-Propagation

x

h

y

L

W

u(1)

u(2)+

⇥

c w

u(3)

b

⇥
+ z u(4)

rcL =


1 0
0 1

�T
ru(2)L

Back-Propagation

x

h

y

L

W

u(1)

u(2)+

⇥

c w

u(3)

b

⇥
+ z u(4)

rcL = �(u(4))(1� 2y)f(u(2))�w

Back-Propagation

x

h

y

L

W

u(1)

u(2)+

⇥

c w

u(3)

b

⇥
+ z u(4)

ru(1)L =


1 0
0 1

�
ru(2)L = �(u(4))(1� 2y)f(u(2))�w

Back-Propagation

x

h

y

L

W

u(1)

u(2)+

⇥

c w

u(3)

b

⇥
+ z u(4)

Here is mapping from R2⇥2 ! R2

u(1) = WTx

Tensors! …WTF?

• In physics tensors have specific roles and rules.

• In ML we usually think of tensors as a
generalization of vectors and matrices.

• So we use tensors to organize data into some
grid form. A vector has 1 index, a matrix has 2
indices, and tensors can be used when more
indices are needed.

Tensors

• Let X be a tensor.

• Even though X may have any number of indices we
can think of this tuple of indices as simply i

• So an element of our tensor can be written Xi

• And the gradient of z wrt to tensor X is rXz

Tensors

• So if Y = g(X) and z = f(Y) then

rXz =
X

j

(rXYj)
@z

@Yj

Back-Propagation

x

h

y

L

W

u(1)

u(2)+

⇥

c w

u(3)

b

⇥
+ z u(4)

Here is mapping from R2⇥2 ! R2

u(1) = WTx

Back-Propagation

x

h

y

L

W

u(1)

u(2)+

⇥

c w

u(3)

b

⇥
+ z u(4)

rWL =
X

j

⇣
rWu(1)

j

⌘
(ru(1)L)j

Back-Propagation

x

h

y

L

W

u(1)

u(2)+

⇥

c w

u(3)

b

⇥
+ z u(4)

rWL = �(u(4))(1� 2y)x (f(u(2))�w)T

So let’s collapse this diagram into functional
layers.

Simple MLP

x

h

y

L

W

u(1)

u(2)+

⇥

c w

u(3)

b

⇥
+ z u(4)

hidden layer

loss layerinput layer

Simple MLP

x h

y

L

W

c

w

b

loss layerinput layer

z

hidden layer output layer

Simple MLP

x h

y

L

W

c

w

b

loss layer

z

@L

@z
= �((1� 2y)z)(1� 2y)

Simple MLP

x h

y

L

W

c

w

b

z

output layer
@L

@b
=

@L

@z

rhL =
@L

@z
w

rwL =
@L

@z
h

Simple MLP

x h

y

L

W

c

w

b

z

hidden layer

rcL = f �rhL rWL = x (f �rhL)
T

Rectified Linear Unit ReLU

g(z) = max(0, z)

0

0
z

dg

dz
= 0

dg

dz
= 1 Let f =

dg

dz

 “ ”

