
Deep Learning

for

Computer Vision
Lecture 5: Logistic Regression, the Joy of Backpropagation,

and the Perceptron

Peter Belhumeur

Computer Science

Columbia University

Binary Classifier

Let’s say we have set of training samples (xi, yi)
with i = 1, …, N and xi and .

The goal is to learn a classifier f(xi) such that

2 Rd yi 2 {�1, 1}

f(xi) =
� 0 yi = +1
< 0 yi = �1

f(x) � 0

f(x) < 0
f(x) = 0

But let’s find a simple parametric separating
surface by fitting to the training data using
some pre-chosen criterion of optimality.

If we restrict the decision surface to a line,
plane, or hyperplane, then we call this a linear
classifier.

Linear Classifier

Let’s say we have set of training samples (xi, yi)
with i = 1, …, N and xi and .

The goal is to learn a classifier f(xi) such that

2 Rd yi 2 {�1, 1}

f(xi) =
� 0 yi = +1
< 0 yi = �1

and where
f(x) = wTx+ b

Linear Classifier
Note:

• The classifier is a line, plane, or hyperplane depending
of the dimension d

• w is normal to the line

• b is known as the bias.

f(x) = wTx+ b

f(x) � 0

f(x) < 0f(x) = 0

wTx+ b � 0

wTx+ b < 0wTx+ b = 0

w

||w||

Linear Classifier

How do we find the weights given by w and b?

f(x) = wTx+ b

Support Vector Machine

Choose weights w and b to maximize the margin
between classes.

f(x) = wTx+ b

wTx+ b � 0

wTx+ b < 0
wTx+ b = 0

Linearly Separable Data

w

margin

Logistic Regression

Introduces a non-linearity over a linear classifier that
results in a different measure for our loss function

f(x) = wTx+ b

�(f(x)) =
1

1 + e�f(x)

Linear

Sigmoid or Logistic Fcn

The LR classifier is defined as

if �(f(x)) � 0.5 ! +1

< 0.5 ! �1

Sigmoid Function

�(z) =
1

1 + e�z

z

Sigmoid Function
�(z) =

1

1 + e�z

• As z goes from goes from 0 to 1

• It has a “sigmoid” or S-like shape

•

�1 to 1, �(z)

�(0) = 0.5

Why a Sigmoid?

Like the hinge loss for the SVM, the sigmoids down-
weights distant samples that are correctly classified.

Sigmoid maps to “probabilities”

• Recall our Bayesian Classifier from before…

• Let’s think of as the posterior probability that
y = 1, or more formally

• So if , then class y = 1

�(f(x))

P (y = 1|x) = �(f(x))

�(f(x)) � 0.5

Loss Function for LR

So for +1 and -1 samples we have

or more concisely

P (y = +1|x;w) = �(wTx)) =
1

1 + e�f(x)

P (y = �1|x;w) = 1� �(wTx)) =
1

1 + e+f(x)

P (y|x;w) =
1

1 + e�yf(x)

Maximum Likelihood Estimate

Now let’s say w is given and are independent,
then the “likelihood” of the samples is

and we can find the Maximum Likelihood Estimate
(MLE) for w by maximizing this joint probability.

(xi, yi)

P (y|x;w) =
NY

i

1

1 + e�yif(xi)

Maximum Likelihood Estimate
Or equivalently we can find w by minimizing the negative
log likelihood

As was the case with SVMs, we can think of this function
as our loss function. It penalizes for where samples fall
relative to the separating hyperplane .

L(w) =
NX

i

log(1 + e�yif(xi))

f(xi) = 0

Logistic Loss

Our cost function for optimizing can be written:

with

Logistic Regression

� =
2

NC
and f(x) = wTx+ b

min
w

C(w) =
�

2
||w||2 + 1

N

NX

i

log(1 + e�yi f(xi))

regularization + loss function

Our cost function for optimizing can be written:

Logistic Regression

min
w

C(w) =
�

2
||w||2 + 1

N

NX

i

log(1 + e�yi f(xi))

• Correctly classified points is negative, loss is near 0

• Incorrectly classified points is positive, loss is large

• The regularization could help with overfitting

�yi f(xi)

�yi f(xi)

Logistic Loss

Logistic Regression vs SVM

min
w

C(w) =
�

2
||w||2 + 1

N

NX

i

log(1 + e�yi f(xi))

regularization + loss function

min
w

C(w) =
�

2
||w||2 + 1

N

NX

i

max(0, 1� yi f(xi))

LR

SVM

And the LR gradient can be written as:

rwC(w) = �w � 1

N

NX

i

yi xi

1 + eyiwTxi

An interlude with Jupyter Notebooks

Computational Graph

x1
x2

xd

1
X

b
w1
w2

wd

y

⇥ exp�1 +1 log

R(w)

+
1

N

f(x,w) =
�

2
||w||2 + 1

N

NX

i

log(1 + e�yi f(xi))

f

Given a training sample x let’s compute the
gradient of f with respect to the weights w.

We have done this before analytically, but let’s
propagate the gradient back to the weights by

using the chain rule!

Why?

Because we cannot be in the business of
deriving all of these gradient by hand as the
computational graph gets more and more
complicated! This method does not scale.

Chain Rule

x1
x2

xd

1
X

b
w1
w2

wd

y

⇥ exp�1 +1 log

R(w)

+
1

N f

f(q)q(g)g(h)h(k)k(p)p(r)

fqghkpr

r(w)

@f

@w
=

@f

@q

@q

@g

@g

@h

@h

@k

@k

@p

@p

@r

@r

@w
+

@R

@w

Chain Rule

x1
x2

xd

1
X

b
w1
w2

wd

y

⇥ exp�1 +1 log

R(w)

+
1

N f

f(q)q(g)g(h)h(k)k(p)p(r)

@f

@q
=

1

N

fqghkpr

r(w)

Chain Rule

x1
x2

xd

1
X

b
w1
w2

wd

y

⇥ exp�1 +1 log

R(w)

+
1

N f

f(q)q(g)g(h)h(k)k(p)p(r)

fqghkpr

r(w)

@q

@g
=

1

g

Chain Rule

x1
x2

xd

1
X

b
w1
w2

wd

y

⇥ exp�1 +1 log

R(w)

+
1

N f

f(q)q(g)g(h)h(k)k(p)p(r)

fqghkpr

r(w)

@g

@h
= 1

Chain Rule

x1
x2

xd

1
X

b
w1
w2

wd

y

⇥ exp�1 +1 log

R(w)

+
1

N f

f(q)q(g)g(h)h(k)k(p)p(r)

fqghkpr

r(w)

@h

@k
= �e�k

Chain Rule

x1
x2

xd

1
X

b
w1
w2

wd

y

⇥ exp�1 +1 log

R(w)

+
1

N f

f(q)q(g)g(h)h(k)k(p)p(r)

fqghkpr

r(w)

@k

@p
= y

Chain Rule

x1
x2

xd

1
X

b
w1
w2

wd

y

⇥ exp�1 +1 log

R(w)

+
1

N f

f(q)q(g)g(h)h(k)k(p)p(r)

fqghkpr

r(w)

@p

@r
= 1

Chain Rule

x1
x2

xd

1
X

b
w1
w2

wd

y

⇥ exp�1 +1 log

R(w)

+
1

N f

f(q)q(g)g(h)h(k)k(p)p(r)

fqghkpr

r(w)

@r

@w
= x

Chain Rule

x1
x2

xd

1
X

b
w1
w2

wd

y

⇥ exp�1 +1 log

R(w)

+
1

N f

f(q)q(g)g(h)h(k)k(p)p(r)

fqghkpr

r(w)

@f

@w
=

1

N
⇥ 1

g
⇥ 1⇥�e�k ⇥ y ⇥ 1⇥ x+ �w

Let’s push a random sample forward through
the computational graph and record the

intermediate values.

Chain Rule

• Let’s say weights w = 0 to start.

• And we have a sample x = [1, 2] and y = +1.

• Let’s calculate the gradient wrt the weights w.

• And we have N = 1 here.

Chain Rule

x1
x2

xd

1
X

b
w1
w2

wd

y

⇥ exp�1 +1 log

R(w)

+
1

N f

fqghkpr

r = 0 p = 0 k = 0 h = 1 g = 2 q = 0.69

@f

@w
=

1

N
⇥ 1

g
⇥ 1⇥�e�k ⇥ y ⇥ 1⇥ x+ �w

f = 0.69

Chain Rule

x1
x2

xd

1
X

b
w1
w2

wd

y

⇥ exp�1 +1 log

R(w)

+
1

N f

fqghkpr

r = 0 p = 0 k = 0 h = 1 g = 2 q = 0.69 f = 0.69

@f

@w1
=

1

1
⇥ 1

2
⇥ 1⇥�e�0 ⇥ 1⇥ 1⇥ 1 + 0

Chain Rule

x1
x2

xd

1
X

b
w1
w2

wd

y

⇥ exp�1 +1 log

R(w)

+
1

N f

fqghkpr

r = 0 p = 0 k = 0 h = 1 g = 2 q = 0.69 f = 0.69

@f

@w1
= �0.5

Chain Rule

x1
x2

xd

1
X

b
w1
w2

wd

y

⇥ exp�1 +1 log

R(w)

+
1

N f

fqghkpr

r = 0 p = 0 k = 0 h = 1 g = 2 q = 0.69

@f

@w
=

1

N
⇥ 1

g
⇥ 1⇥�e�k ⇥ y ⇥ 1⇥ x+ �w

f = 0.69

Chain Rule

x1
x2

xd

1
X

b
w1
w2

wd

y

⇥ exp�1 +1 log

R(w)

+
1

N f

fqghkpr

r = 0 p = 0 k = 0 h = 1 g = 2 q = 0.69

@f

@w2
=

1

1
⇥ 1

2
⇥ 1⇥�e�0 ⇥ 1⇥ 1⇥ 2 + 0

f = 0.69

Chain Rule

x1
x2

xd

1
X

b
w1
w2

wd

y

⇥ exp�1 +1 log

R(w)

+
1

N f

fqghkpr

r = 0 p = 0 k = 0 h = 1 g = 2 q = 0.69

@f

@w2
= �1.0

f = 0.69

Wow! That took a while. But you can see how
this would generalize.

We have our gradient and now we need to
move in the direction opposite the gradient!

Gradient Descent

• Recall w = [0, 0]T from before

• Let’s choose a learning rate

• Then we update as

⌘ = 0.1

wt+1 = wt � ⌘rwtf(wt)

Gradient Descent

• So

• And we get

w2 = w1 � 0.1rw1f(w)

w2 =


0
0

�
� 0.1


�0.5
1.0

�
=


0.05
0.1

�

--

Let’s push another random point through and
do it all again.

Chain Rule

• Now

• And our new sample x = [2, 1] and y = -1.

• Let’s calculate the gradient wrt the weights w.

• Again we have N = 1 here.

w =


0.05
0.1

�

Chain Rule

x1
x2

xd

1
X

b
w1
w2

wd

y

⇥ exp�1 +1 log

R(w)

+
1

N f

fqghkp

p = 0.2

k = �0.2

h = e0.2

g = 2.2

q = 0.80

v

rwf(w) =
1

N
⇥ 1

g
⇥ 1⇥�e�k ⇥ y ⇥ 1⇥ x+ �w

f = 0.85

Chain Rule

x1
x2

xd

1
X

b
w1
w2

wd

y

⇥ exp�1 +1 log

R(w)

+
1

N f

fqghkp

p = 0.2

k = �0.2

h = e0.2

g = 2.2

q = 0.80

v

rwf(w) =
1

1
⇥ 1

2.2
⇥ 1⇥�e0.2 ⇥�1⇥ 1⇥ x+w

f = 0.85

Chain Rule

x1
x2

xd

1
X

b
w1
w2

wd

y

⇥ exp�1 +1 log

R(w)

+
1

N f

fqghkp

p = 0.2

k = �0.2

h = e0.2

g = 2.2

q = 0.80

v

rwf(w) = 0.56x+w

f = 0.85

Chain Rule

x1
x2

xd

1
X

b
w1
w2

wd

y

⇥ exp�1 +1 log

R(w)

+
1

N f

fqghkp

p = 0.2

k = �0.2

h = e0.2

g = 2.2

q = 0.80

v

f = 0.85

rwf(w) = 0.56x+w =


1.16
0.65

�

Gradient Descent

• So

• And we get

w3 = w2 � 0.1rw2f(w2)

w3 =


0.05
0.1

�
� 0.1


1.16
0.65

�
=


�0.066
0.035

�

+

-

w3

A Simple Neural Network

The Perceptron
[Rosenblatt 57]

x1
x2

xd

1
X

b
w1
w2

wd

fS

f(x;w) = S(wTx+ b) =
1

1 + e�w1x1�...�wdxd+b

S(z) =
1

1 + e�z

P (y = 1|x,w, b)

