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Binary Classifier

Let’s say we have set of training samples (xi, yi)
withi=1,...,Nand x;c R? and v: € {—1,1}.

The goal is to learn a classitier f(x;) such that

>0y = +1

f(Xi): <0 y, =—1






But let’s find a simple parametric separating
surface by fitting to the training data using
some pre-chosen criterion of optimality.

If we restrict the decision surface to a line,

olane, or hyperplane, then we call this a linear
classifier.



| iInear Classifier

Let’s say we have set of training samples (xi, yi)
withi=1,...,Nand x;c R? and v: € {—1,1}.

The goal is to learn a classitier f(x;) such that

f(Xz)— <0 y;, =—1

and where
f(x) =wlix+b



| iInear Classifier

Note:

* The classifier is aline, plane, or hyperplane depending
of the dimension d

e w IS normal to the line

e bIs known as the bias.

f(x) =wlix+b









| iInear Classifier

How do we find the weights given by w and b"”

f(x) =wlix+b



Support Vector Machine

Choose weights w and b to maximize the margin
between classes.

f(x) =wlix+b



Linearly Separable Data

A

A0 e margin

wix+b>0 -

wix+b<0




L ogistic Regression

Introduces a non-linearity over a linear classifier that
results in a different measure for our loss function

f(x)=wlx+b Linear

1

U(f(X)) — 1+ e—f()

Sigmoid or Logistic Fcn

The LR classifier Is defined as

if o(f(x)) >0.5 — +1
<05 — —1




Sigmoid Function
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Sigmoid Function

B 1
1+ e

o(z)

e As z goes from —oo to 0o, o(z) goes from O to 1

* |t has a “sigmoid” or S-like shape

« 0(0)=0.5



Why a Sigmoid??

Like the hinge loss for the SVM, the sigmoids down-
weights distant samples that are correctly classified.



Sigmoid maps to “probabilities”

» Recall our Bayesian Classifier from before...

e Let's think of o(f(x)) as the posterior probability that
y =1, or more formally

Py =1|x) = o(f(x))

Soif o(f(x))>0.5,thenclassy=1



L.oss Function for LR

So for +1 and -1 samples we have

1
_ : _ T _
P(y I _I_l‘Xv W) N O-(W X)) N 1 _l_ G_f(x)

e 1

Ply=-1xw) =1-0(w'x)) = 7=,

or more concisely

1
1 4+ e—yf(x)

P(y|lx;w) =



Maximum Likelihood Estimate

Now let's say w Is given and(x;, y;) are independent,
then the “likelihood” of the samples is

N

P(ylx;w) = ||

1

1
1 4+ e—Yif(xi)

and we can find the Maximum Likelihood Estimate
(MLE) for w by maximizing this joint probability.



Maximum Likelihood Estimate

Or equivalently we can find w by minimizing the negative
log likelihood

N
L(w) = Z log(1 + 6—y,,;f(x7;)>

As was the case with SVMs, we can think of this function
as our loss function. It penalizes for where samples fall
relative to the separating hyperplane f(x;) = 0.



| ogistic LOSS

— 0-1
— hinge
logistic

yi f(x;)

A

-1 0 1 2 3 4



L ogistic Regression

Our cost function for optimizing can be written:

N
. A 1 s
minC(w) = 2|wlf? + 1= > log(1 + ¥ S0)

regularization + loss function

. 2 7
W|th )\—N—Candf(x)—w X—|—b



L ogistic Regression

Our cost function for optimizing can be written:

A

min C(w) = 5

N
1
HWHQ_I_ﬁzlog(l_l_e_yif(m))

« Correctly classified points —y; f(xi) is negative, loss is near O
» Incorrectly classified points —¥; f(xi) is positive, loss is large

e The regularization could help with overfitting



| ogistic LOSS

— 0-1
— hinge
logistic

yi f(x;)

A

-1 0 1 2 3 4



|_ogistic Regression vs SVM

A |

min C(w) = 5\|w|\2 + > log(1+ e /0 R
A\ 1 <«
min C(w) = 5|\w\|2 + 5 Y max(0,1—y; f(xi))  SVM

regularization + loss function



And the LR gradient can be written as:




An interlude with Jupyter Notebooks






Computational Graph

N
A 2 1 —vy; f(xi)
fx,w) = S[[wl] +N§ijlog(1+e v 10a))
1
y .




Given a training sample x let's compute the
gradient of f with respect to the weights w.




We have done this betore analytically, but let’s
propagate the gradient back to the weights by
using the chain rule!




Why?

Because we cannot be in the business of
deriving all of these gradient by hand as the
computational graph gets more and more
complicated! This method does not scale.




Chain Rule

ﬁ_ df 0q dg Oh Ok Op Or  OR

Ow  dq dg Oh Ok Op Or dw ~ dw



Chain Rule




Chain Rule




Chain Rule




Chain Rule




Chain Rule




Chain Rule




Chain Rule




Chain Rule




Let’s push a random sample forward through
the computational graph and record the
iIntermediate values.




Chain Rule

Let's say weights w = O to start.
And we have a samplex = [1, 2] and y = +1.
Let's calculate the gradient wrt the weights w.

And we have N = 1 here.



Chain Rule




Chain Rule

of 11

_—'><§><1><—e_0><1><1><1 0

6’w1



Chain Rule




Chain Rule




Chain Rule

of 11

_—'><§><1><—e_0><1><1><2 0

6’w2



Chain Rule




Wow! That took a w

N

this wou

e.
|d generalize.

But you can see how



We have our gradient and now we need to
move In the direction opposite the gradient!




Gradient Descent

 Recallw = [0, O]T from before

 |Let's choose a learning rate 1 = 0.1

* [Then we update as wi; 1 = wy — NV, f(Wy)



Gradient Descent

e SO wy =w; — 0.1V, f(w)

e And we get wg =

01| Lo

- 0.05

01



Let's push another random point through and
do it all again.



Chain Rule

- 0.05

Now w = 01

And our new sample x = [2, 1] and y = -1.
Let's calculate the gradient wrt the weights w.

Again we have N = 1 here.



Chain Rule




Chain Rule

1 1
vwf(W):TXﬁ><1><—€O'2><—1><1><X—|—W



Chain Rule




Chain Rule

Vwf(w)=0.56x4+w =




Gradient Descent

e SO w3 =wy — 0.1V, f(W3)

e And we get w3 =

- 0.05

01

— 0.1

1.16

| 0.65

- —0.066

- 0.035






A Simple Neural Network



I'he Perceptron

[Rosenblatt 57]
1 b
iIZ'lMA
@mtz B P(y = 1|x,w,b)
wd/wd/'
(x;w) = S(w"x +b) = 1
fxsw) =5(w’x - 14 emwmim— e mwarath

S(z) :

T 14 ez



NEW NAVY DEVIGR
LEARNS BY DOING

Psychologist Shows Embryo
of Computer Designed to
Read and Grow Wiser

WASHINGTON, July 7 (UPI)
—The Navy revealed the em-
bryo of an electronic computer
today that it expects will be
able to walk, talk, see, write,
reproduce itself and be con-
scious of its existence,

The embryo—the Weather
Bureau's $2,000,000 704" com-
puter—learned to differentiate

between right and left after|

fifty aftempts in the Navy's
demonstration for newsmen,,

The service said it would use
this principle to build the first
of its Perceptron thinking ma-
chines that will be able to read
and write, It is expected to be
finished in about a year at a
cost of $100,000.

Dr. Frank Rosenblatt, de-
signer of the Perceptron, con-
ducted the demonstration. He
said ‘the machine would be the
first device to think as the hu-
Iman brain. As do human be-

ings, Perceptron will make mis-
takeg at first, but will grow
wiser as it gains experience, he
said, '

Dr. Rosenblatt, a research

psychologist at the -Cornell
Aeronautical Laboratory, Buf—i
falo, said Perceptrons might be
fired to the planets as mechani-

cal space explorers. ,
Without Human Controls

|

The Navy said the perceptron
would be the. first non-living!
mechanism “capable of receiv-|
ing, recognizing and identifying
its surroundingsg without -any
human training or control.”

The “brain” is designed to
remember images and informa-
tion it has perceived itself. Ordi-
nary computers remember only
what ig fed into them on punch
cards or magnetic tape. .

Later Perceptrons will be able
to recognize people and call out
‘their names and instantly trans-
late speech in one language to
speech or writing in another
language, it was predicted,

Mr. Rosenblatt said in prin-
ciple it would be possible to
build brains that could repro-
duce themselves on an assembly
line and which would be con-

L

scious of their existence.

1958 New York
Times...

In today's demonstration, the
“704" was fed two cards, one
with squares marked on the left
side and the other with squares
on the right side.

Learng by Doing

In the first fifty trials, the

machine made no distinction be-
tween them. It then started

registering a “Q" for the left
squares and “O"” for the right

squares.
Dr. Rosenblatt said he could
explain why the machine

learned only in highly technical
terms, But he said the computer
had undergone a ‘‘self-induced
change in the wiring diagram.”

The first Perceptron will
have about 1,000 electronic
“association cells” recelving
electrical impulses from an eye-
like scanning device with 400
photo-cells. The human brain
has 10,000,000,000 responsive
cells, including 100,000,000 con-

nections with the eyes,
]




