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Binary Classifier

Let’s say we have set of training samples (xi, yi) 
with i = 1, …, N and xi                and                      .  

The goal is to learn a classifier f(xi) such that

2 Rd yi 2 {�1, 1}

f(xi) =
� 0 yi = +1
< 0 yi = �1



f(x) � 0

f(x) < 0
f(x) = 0



But let’s find a simple parametric separating 
surface by fitting to the training data using 
some pre-chosen criterion of optimality.

If we restrict the decision surface to a line, 
plane, or hyperplane, then we call this a linear 
classifier.



Linear Classifier

Let’s say we have set of training samples (xi, yi) 
with i = 1, …, N and xi                and                      .  

The goal is to learn a classifier f(xi) such that

2 Rd yi 2 {�1, 1}

f(xi) =
� 0 yi = +1
< 0 yi = �1

and where
f(x) = wTx+ b



Linear Classifier
Note:


• The classifier is  a line, plane, or hyperplane depending 
of the dimension d 

• w is normal to the line 


• b is known as the bias.

f(x) = wTx+ b



f(x) � 0

f(x) < 0f(x) = 0



wTx+ b � 0

wTx+ b < 0wTx+ b = 0

w

||w||



Linear Classifier

How do we find the weights given by w and b?

f(x) = wTx+ b



Support Vector Machine

Choose weights w and b to maximize the margin 
between classes.

f(x) = wTx+ b



wTx+ b � 0

wTx+ b < 0
wTx+ b = 0

Linearly Separable Data

w

margin



Logistic Regression

Introduces a non-linearity over a linear classifier that 
results in a different measure for our loss function

f(x) = wTx+ b

�(f(x)) =
1

1 + e�f(x)

Linear 

Sigmoid or Logistic Fcn

The LR classifier is defined as 

if �(f(x)) � 0.5 ! +1

< 0.5 ! �1



Sigmoid Function

�(z) =
1

1 + e�z

z



Sigmoid Function
�(z) =

1

1 + e�z

• As z  goes from                            goes from 0 to 1


• It has a “sigmoid” or S-like shape


•

�1 to 1, �(z)

�(0) = 0.5



Why a Sigmoid?

Like the hinge loss for the SVM, the sigmoids down-
weights distant samples that are correctly classified.




Sigmoid maps to “probabilities”

• Recall our Bayesian Classifier from before…


• Let’s think of                as the posterior probability that 
y = 1,  or more formally


•   So if                          , then class y = 1

�(f(x))

P (y = 1|x) = �(f(x))

�(f(x)) � 0.5



Loss Function for LR

So for +1 and -1 samples we have


or more concisely 


 

P (y = +1|x;w) = �(wTx)) =
1

1 + e�f(x)

P (y = �1|x;w) = 1� �(wTx)) =
1

1 + e+f(x)

P (y|x;w) =
1

1 + e�yf(x)



Maximum Likelihood Estimate

Now let’s say w is given and              are independent, 
then the “likelihood” of the samples is 


and we can find the Maximum Likelihood Estimate 
(MLE) for w by maximizing this joint probability.  


 

(xi, yi)

P (y|x;w) =
NY

i

1

1 + e�yif(xi)



Maximum Likelihood Estimate
Or equivalently we can find w by minimizing the negative 
log likelihood 


As was the case with SVMs, we can think of this function 
as our loss function. It penalizes for where samples fall 
relative to the separating hyperplane                  . 


 

L(w) =
NX

i

log(1 + e�yif(xi))

f(xi) = 0



Logistic Loss



Our cost function for optimizing can be written:


with 


Logistic Regression

� =
2

NC
and f(x) = wTx+ b

min
w

C(w) =
�

2
||w||2 + 1

N

NX

i

log(1 + e�yi f(xi))

regularization   +   loss function



Our cost function for optimizing can be written:


Logistic Regression

min
w

C(w) =
�

2
||w||2 + 1

N

NX

i

log(1 + e�yi f(xi))

• Correctly classified points                  is negative, loss is near 0


• Incorrectly classified points                  is positive, loss is large


• The regularization could help with overfitting

�yi f(xi)

�yi f(xi)



Logistic Loss



Logistic Regression vs SVM

min
w

C(w) =
�

2
||w||2 + 1

N

NX

i

log(1 + e�yi f(xi))

regularization   +   loss function

min
w

C(w) =
�

2
||w||2 + 1

N

NX

i

max(0, 1� yi f(xi))

LR

SVM



And the LR gradient can be written as:


rwC(w) = �w � 1

N

NX

i

yi xi

1 + eyiwTxi



An interlude with Jupyter Notebooks 





Computational Graph

x1
x2

xd

1
X

b
w1
w2

wd

y

⇥ exp�1 +1 log

R(w)

+
1

N

f(x,w) =
�

2
||w||2 + 1

N

NX

i

log(1 + e�yi f(xi))

f



Given a training sample x let’s compute the 
gradient of  f  with respect to the weights w.



We have done this before analytically, but let’s 
propagate the gradient back to the weights by 

using the chain rule!



Why? 


Because we cannot be in the business of 
deriving all of these gradient by hand as the 
computational graph gets more and more 
complicated! This method does not scale.



Chain Rule

x1
x2

xd

1
X

b
w1
w2

wd

y

⇥ exp�1 +1 log

R(w)

+
1

N f

f(q)q(g)g(h)h(k)k(p)p(r)

fqghkpr

r(w)
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Chain Rule

x1
x2

xd

1
X

b
w1
w2

wd

y

⇥ exp�1 +1 log

R(w)

+
1

N f

f(q)q(g)g(h)h(k)k(p)p(r)

@f

@q
=

1

N

fqghkpr

r(w)



Chain Rule

x1
x2

xd

1
X

b
w1
w2

wd

y

⇥ exp�1 +1 log

R(w)

+
1

N f

f(q)q(g)g(h)h(k)k(p)p(r)

fqghkpr

r(w)

@q

@g
=

1

g



Chain Rule

x1
x2

xd

1
X

b
w1
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wd

y

⇥ exp�1 +1 log

R(w)

+
1

N f

f(q)q(g)g(h)h(k)k(p)p(r)

fqghkpr

r(w)

@g

@h
= 1



Chain Rule

x1
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xd

1
X
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w1
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wd

y

⇥ exp�1 +1 log

R(w)

+
1

N f

f(q)q(g)g(h)h(k)k(p)p(r)

fqghkpr

r(w)

@h

@k
= �e�k



Chain Rule
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+
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N f
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fqghkpr
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@k
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Chain Rule
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+
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N f
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fqghkpr
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@p
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Chain Rule

x1
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1
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y

⇥ exp�1 +1 log
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+
1

N f

f(q)q(g)g(h)h(k)k(p)p(r)

fqghkpr

r(w)

@r
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= x



Chain Rule

x1
x2

xd

1
X

b
w1
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wd

y

⇥ exp�1 +1 log

R(w)

+
1

N f

f(q)q(g)g(h)h(k)k(p)p(r)

fqghkpr

r(w)

@f

@w
=

1

N
⇥ 1

g
⇥ 1⇥�e�k ⇥ y ⇥ 1⇥ x+ �w



Let’s push a random sample forward through 
the computational graph and record the 

intermediate values. 



Chain Rule

• Let’s say weights w = 0 to start.


• And we have a sample x = [1, 2] and y = +1.


• Let’s calculate the gradient wrt the weights w.


• And we have N = 1 here.



Chain Rule

x1
x2

xd

1
X

b
w1
w2

wd
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⇥ exp�1 +1 log

R(w)

+
1

N f

fqghkpr

r = 0 p = 0 k = 0 h = 1 g = 2 q = 0.69

@f

@w
=

1

N
⇥ 1

g
⇥ 1⇥�e�k ⇥ y ⇥ 1⇥ x+ �w

f = 0.69



Chain Rule
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Chain Rule
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+
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N f

fqghkpr
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@f
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Chain Rule

x1
x2

xd

1
X

b
w1
w2

wd

y

⇥ exp�1 +1 log

R(w)

+
1

N f

fqghkpr

r = 0 p = 0 k = 0 h = 1 g = 2 q = 0.69

@f

@w
=

1

N
⇥ 1

g
⇥ 1⇥�e�k ⇥ y ⇥ 1⇥ x+ �w

f = 0.69



Chain Rule
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Chain Rule
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Wow! That took a while. But you can see how 
this would generalize. 



We have our gradient and now we need to 
move in the direction opposite the gradient!



Gradient Descent

• Recall w = [0, 0]T  from before


• Let’s choose a learning rate


• Then we update as 

⌘ = 0.1

wt+1 = wt � ⌘rwtf(wt)



Gradient Descent

• So 


• And we get

w2 = w1 � 0.1rw1f(w)

w2 =


0
0

�
� 0.1


�0.5
1.0

�
=


0.05
0.1

�

--



Let’s push another random point through and 
do it all again.



Chain Rule

• Now 


• And our new sample x = [2, 1] and y = -1.


• Let’s calculate the gradient wrt the weights w.


• Again we have N = 1 here.

w =


0.05
0.1

�



Chain Rule

x1
x2

xd

1
X

b
w1
w2

wd

y

⇥ exp�1 +1 log

R(w)

+
1

N f

fqghkp

p = 0.2

k = �0.2

h = e0.2

g = 2.2

q = 0.80

v

rwf(w) =
1

N
⇥ 1

g
⇥ 1⇥�e�k ⇥ y ⇥ 1⇥ x+ �w

f = 0.85



Chain Rule
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Chain Rule
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Chain Rule
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Gradient Descent

• So 


• And we get

w3 = w2 � 0.1rw2f(w2)

w3 =


0.05
0.1

�
� 0.1


1.16
0.65

�
=


�0.066
0.035

�



+

-

w3



A Simple Neural Network



The Perceptron
[Rosenblatt 57]
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b
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f(x;w) = S(wTx+ b) =
1

1 + e�w1x1�...�wdxd+b

S(z) =
1

1 + e�z

P (y = 1|x,w, b)




