
Deep Learning
for

Computer Vision

Lecture 4: Curse of Dimensionality, High Dimensional Feature Spaces,
Linear Classifiers, Linear Regression, Python, and Jupyter Notebooks

Peter Belhumeur

Computer Science
Columbia University

If we want to build a minimum-error rate
classifier then we need a very good
estimate of .P (!i|x)

Let’s say our feature space is just 1
dimensional and our feature .x 2 [0, 1]

And let’s say we have 10,000 training samples
from which to estimate our a posteriori
probabilities.

We could estimate these probabilities using a
histogram in which we divided the interval into
100 evenly spaced bins.

0 1
On average each bin would have 100 samples.

We could estimate as the number of
samples from class i that fall in the same bin that
falls into divided by the total number of samples.

x

!1 !2

⇢(x|!i)

But this plan does not scale as we increase the
dimensionality of the feature space!

The Curse of Dimensionality!

Let’s say our feature space is just 3
dimensional and our feature .

Let’s say we still have 10,000 training samples
from which to estimate our a posteriori
probabilities.

If we estimate these probabilities using a
histogram in which we divided the volume into
the same width bins as before…

x 2 [0, 1]3

On average each bin would only have 0.01 samples! Ugh.

So we never have enough training samples to
densely sample high-dimensional feature spaces!

And to make matters worse, intuition about how
things behave in high-dimensional spaces is
mostly incorrect.

⇡

4

What fraction of the volume of the unit hypercube
is occupied by the biggest hypersphere that fits
within it in n-dimensions? Say if n=20?

= Vn R
nVolume of n-d hypersphere

Vn =
⇡

n
2

�(n2 + 1)

So if n = 20, the volume =
⇡10

�(10 + 1)

✓
1

2

◆20

=
⇡10

10!

✓
1

2

◆20

= 0.0000000246

Another way to think of this is … if we uniformly
sampled 100 million points in the unit hypercube,
then we should expect less than 3 of them would
lie within its contained hypersphere.

So it’s hard/impossible to accurately estimate joint
probabilities for high-dimensional random
variables. You just cannot get enough samples!

You can assume the joint density function, in our
case the class conditional density functions, are
given by a known density of some parametric
form, e.g., a multivariate Normal.

Pattern Classification, Chapter 2 (Part 1)

Bayes Theorem

P (!i|x) =
⇢(x|!i)P (!i)

P (x)

=
⇢(x|!i)P (!i)P
i ⇢(x|!i)P (!i)

=
likelihood ⇥ prior

evidence

Pattern Classification, Chapter 2 (Part 1)

Bayes Theorem

P (!i|x) =
⇢(x|!i)P (!i)

P (x)

=
⇢(x|!i)P (!i)P
i ⇢(x|!i)P (!i)

=
likelihood ⇥ prior

evidence

ρ(x) =
1

(2π)d |Σ |
e− 1

2 (x−μ)TΣ−1(x−μ)

Let’s assume the ccds are multivariate normals.

If , then x ∼ N(μ, Σ)

To find the ccds we just need to estimate and
from our samples for each class, separately.

μ Σ
xi

μ =
1
N

N

∑
i

xi

Σ =
1

N − 1

N

∑
i

(xi − μ)(xi − μ)T

Pattern Classification, Chapter 2 (Part 1)

Bayes Theorem

P (!i|x) =
⇢(x|!i)P (!i)

P (x)

=
⇢(x|!i)P (!i)P
i ⇢(x|!i)P (!i)

=
likelihood ⇥ prior

evidence

One shortcut around this is “Naive Bayes.”
Everything is the same as before, but now we
assume that our features are independent and we
can estimate the class conditionals for each
separately. And to get the joint class conditional
density function, we simply approximate this as
the product of the per feature ccds—because of
the independence assumption.

Linear Regression

x

y

Find the line that minimizes the sum of the
squared vertical distances of the line to the
sample points.

Let the line be parameterized by

where and ✓ =

✓0
✓1

�
x =

1
x

�

y = ✓0 + ✓1x

= ✓Tx = h✓(x)

Now given sample points ,

we can write our loss function to minimize as

(x(i), y(i))

J(✓) =
1

2m

mX

i=1

⇣
h✓(x

(i))� y(i)
⌘2

and its gradient as

r✓J(✓) =
1

m

mX

i=1

⇣
h✓(x

(i))� y(i)
⌘
x(i)

This is a convex optimization problem so we
can easily find the solution using gradient
descent:

✓(t+ 1) = ✓(t)� ↵r✓J(✓(t))

Course Programming Language: Python

https://www.python.org

Course Coding Environment: Jupyter Notebooks

http://jupyter.org

Binary Classifier

Let’s say we have set of training samples (xi, yi)
with i = 1, …, N and xi and .

The goal is to learn a classifier f(xi) such that

2 Rd yi 2 {�1, 1}

f(xi) =
� 0 yi = +1
< 0 yi = �1

f(x) � 0

f(x) < 0
f(x) = 0

But let’s find a simple parametric separating
surface by fitting to the training data using
some pre-chosen criterion of optimality.

If we restrict the decision surface to a line,
plane, or hyperplane, then we call this a linear
classifier.

Linear Classifier

Let’s say we have set of training samples (xi, yi)
with i = 1, …, N and xi and .

The goal is to learn a classifier f(xi) such that

2 Rd yi 2 {�1, 1}

f(xi) =
� 0 yi = +1
< 0 yi = �1

and where
f(x) = wTx+ b

Linear Classifier
Note:

• The classifier is a line, plane, or hyperplane depending
of the dimension d

• w is normal to the line

• b is known as the bias.

f(x) = wTx+ b

f(x) � 0

f(x) < 0f(x) = 0

wTx+ b � 0

wTx+ b < 0wTx+ b = 0

w

||w||

wTx+ b = 0

Linearly Separable Data

wTx+ b = 0

NOT Linearly Separable Data

NOT Linearly Separable Data

Linear Classifier

How do we find the weights given by w and b?

f(x) = wTx+ b

We need to choose our weights according to
some notion of optimality.

So what is the best w?

Support Vector Machine

Choose weights w and b to maximize the margin
between classes.

f(x) = wTx+ b

wTx+ b � 0

wTx+ b < 0
wTx+ b = 0

Linearly Separable Data

w

margin

• We can choose the normalization of w however
we please since this is a free parameter.

• Let’s choose it so for the positive and negative
support vectors so we have

• This makes the margin width

wTx+ + b = +1

wTx� + b = �1

2

||w||

wTx+ b � 0

wTx+ b < 0wTx+ b = 0

Linearly Separable Data

w

2

||w||

wTx+ b = 1

wTx+ b = �1

• We can now set this choice of w up as an
optimization:

• Or equivalently,

• This is a quadratic optimization with linear
constraints and a unique minimum.

max
w

2

||w|| subject to
wTxi + b � +1 if yi = +1
wTxi + b �1 if yi = �1

min
w

||w||2 subject to yi(w
Txi + b) � 1

What if the data is not linearly separable or has
some bad apples?

We soften the optimization with “slack” variables:

subject to

min
w

||w||2 + C
NX

i

⇠i

yi(w
Txi + b) � 1� ⇠i and ⇠i � 0

Soft Margin and Slack Variables

• If we make our slack variables large enough we can
satisfy all of the constraints

• C is the regularization parameter

• Large C makes constraints hard to ignore = small margin

• Small C makes constraints easy to ignore = large margin

• Still a unique minimum

wTx+ b = 0

NOT Linearly Separable Data

w

b

||w||

2

||w||

wTx+ b = 1

wTx+ b = �1

⇠i > 2

0 < ⇠i < 1

And with a little manipulation we get

Soft Margin and Slack Variables

min
w

||w||2 + C
NX

i

max(0, 1� yif(xi))

regularization + loss function

• If a point is on its side of the support vector(s), there is
no contribution to the loss as

• If the point is within the margin or on other side of the
opposite support vector(s), then there is a contribution
to the loss as yif(xi)) < 1

yif(xi)) � 1

yif(xi))

Loss
Hinge Loss

10-1-2-3

4

3

2

1

wTx+ b = 0

NOT Linearly Separable Data

w

b

||w||

2

||w||

wTx+ b = 1

wTx+ b = �1

⇠i > 2

0 < ⇠i < 1

There is a closed form solution to optimal w

Alternatively, you use gradient descent!

Optimization

min
w

||w||2 + C
NX

i

max(0, 1� yif(xi))

regularization + loss function

Our cost function for optimizing can be re-written:

with

Gradient Descent for SVM

� =
2

NC
and f(x) = wTx+ b

min
w

C(w) =
�

2
||w||2 + 1

N

NX

i

max(0, 1� yi f(xi))

So gradient descent might look like:

with the learning rate

but this gradient is not differentiable

Gradient Descent for SVM

wt+1 wt � ⌘trwC(wt)

rwC(w)

⌘t

Loss

(Sub-)Gradient of Hinge Loss

10-1-2-3

4

3

2

1

L(x, y;w) = max(0, 1� yf(x))

rwL = �yx

rwL = 0

yf(x))

So now the whole gradient becomes:

where 1[t] is and indicator function = 1 if
argument is true and 0 if false.

rwC(w) = �w � 1

N

NX

i

1[ywTxi < 1] y xi

Pegasos Algorithm

Pegasos is a stochastic gradient descent
algorithm with a mini batch size = 1!

