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If we want to build a minimum-error rate 
classifier then we need a very good 
estimate of               .P (!i|x)



Let’s say our feature space is just 1 
dimensional and our feature               .x 2 [0, 1]

And let’s say we have 10,000 training samples  
from which to estimate our a posteriori  
probabilities. 

We could estimate these probabilities using a 
histogram in which we divided the interval into 
100 evenly spaced bins. 



0 1
On average each bin would have 100 samples.  
  
We could estimate                 as the number of  
samples from class  i  that fall in the same bin that  
falls into divided by the total number of samples. 

x

!1 !2

⇢(x|!i)



But this plan does not scale as we increase the 
dimensionality of the feature space!



The Curse of Dimensionality!



Let’s say our feature space is just 3 
dimensional and our feature                .

Let’s say we still have 10,000 training samples  
from which to estimate our a posteriori  
probabilities. 

If we estimate these probabilities using a 
histogram in which we divided the volume into 
the same width bins as before…

x 2 [0, 1]3



On average each bin would only have 0.01 samples!  Ugh.



So we never have enough training samples to 
densely sample high-dimensional feature spaces!



And to make matters worse, intuition about how 
things behave in high-dimensional spaces is 
mostly incorrect. 
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What fraction of the volume of the unit hypercube 
is occupied by the biggest hypersphere that fits 
within it in n-dimensions? Say if n=20?



= Vn R
nVolume of n-d hypersphere
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So if  n = 20,  the volume   =
⇡10

�(10 + 1)
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= 0.0000000246



Another way to think of this is … if we uniformly 
sampled 100 million points in the unit hypercube, 
then we should expect less than 3 of them would 
lie within its contained hypersphere.



So it’s hard/impossible to accurately estimate joint 
probabilities for high-dimensional random 
variables. You just cannot get enough samples!



You can assume the joint density function, in our 
case the class conditional density functions, are 
given by a known density of some parametric 
form, e.g., a multivariate Normal.



Pattern Classification, Chapter 2 (Part 1)

Bayes Theorem

P (!i|x) =
⇢(x|!i)P (!i)

P (x)

=
⇢(x|!i)P (!i)P
i ⇢(x|!i)P (!i)

=
likelihood ⇥ prior

evidence
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ρ(x) =
1

(2π)d |Σ |
e− 1

2 (x−μ)TΣ−1(x−μ)

Let’s assume the ccds are multivariate normals.  

If  , then x ∼ N(μ, Σ)



To find the ccds we just need to estimate   and    
from our samples   for each class, separately.  
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One shortcut around this is “Naive Bayes.” 
Everything is the same as before, but now we 
assume that our features are independent and we 
can estimate the class conditionals for each 
separately. And to get the joint class conditional 
density function, we simply approximate this as 
the product of the per feature ccds—because of 
the independence assumption.





Linear Regression 



x

y



Find the line that minimizes the sum of the 
squared vertical distances of the line to the 
sample points. 

Let the line be parameterized by 

where                            and   ✓ =


✓0
✓1

�
x =


1
x

�

y = ✓0 + ✓1x

= ✓Tx = h✓(x)



Now given sample points                  ,

we can write our loss function to minimize as 

(x(i), y(i))

J(✓) =
1

2m

mX

i=1

⇣
h✓(x

(i))� y(i)
⌘2

and its gradient as  

r✓J(✓) =
1

m

mX
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(i))� y(i)
⌘
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This is a convex optimization problem so we 
can easily find the solution using gradient 
descent:

✓(t+ 1) = ✓(t)� ↵r✓J(✓(t))



Course Programming Language: Python

https://www.python.org


Course Coding Environment: Jupyter Notebooks

http://jupyter.org






Binary Classifier

Let’s say we have set of training samples (xi, yi) 
with i = 1, …, N and xi                and                      .  

The goal is to learn a classifier f(xi) such that

2 Rd yi 2 {�1, 1}

f(xi) =
� 0 yi = +1
< 0 yi = �1



f(x) � 0

f(x) < 0
f(x) = 0



But let’s find a simple parametric separating 
surface by fitting to the training data using 
some pre-chosen criterion of optimality.

If we restrict the decision surface to a line, 
plane, or hyperplane, then we call this a linear 
classifier.



Linear Classifier

Let’s say we have set of training samples (xi, yi) 
with i = 1, …, N and xi                and                      .  

The goal is to learn a classifier f(xi) such that

2 Rd yi 2 {�1, 1}

f(xi) =
� 0 yi = +1
< 0 yi = �1

and where
f(x) = wTx+ b



Linear Classifier
Note: 

• The classifier is  a line, plane, or hyperplane depending 
of the dimension d 

• w is normal to the line  

• b is known as the bias.

f(x) = wTx+ b



f(x) � 0

f(x) < 0f(x) = 0



wTx+ b � 0

wTx+ b < 0wTx+ b = 0

w

||w||



wTx+ b = 0

Linearly Separable Data



wTx+ b = 0

NOT Linearly Separable Data



NOT Linearly Separable Data



Linear Classifier

How do we find the weights given by w and b?

f(x) = wTx+ b



We need to choose our weights according to 
some notion of optimality. 

So what is the best w?



Support Vector Machine

Choose weights w and b to maximize the margin 
between classes.

f(x) = wTx+ b



wTx+ b � 0

wTx+ b < 0
wTx+ b = 0

Linearly Separable Data

w

margin



• We can choose the normalization of w however 
we please since this is a free parameter. 

• Let’s choose it so for the positive and negative 
support vectors so we have  

• This makes the margin width 

wTx+ + b = +1

wTx� + b = �1

2

||w||



wTx+ b � 0

wTx+ b < 0wTx+ b = 0

Linearly Separable Data

w

2

||w||

wTx+ b = 1

wTx+ b = �1



• We can now set this choice of w up as an 
optimization: 

• Or equivalently,   

• This is a quadratic optimization with linear 
constraints and a unique minimum.

max
w

2

||w|| subject to
wTxi + b � +1 if yi = +1
wTxi + b  �1 if yi = �1

min
w

||w||2 subject to yi(w
Txi + b) � 1



What if the data is not linearly separable or has 
some bad apples? 



We soften the optimization with “slack” variables: 

subject to  

min
w

||w||2 + C
NX

i

⇠i

yi(w
Txi + b) � 1� ⇠i and ⇠i � 0

Soft Margin and Slack Variables



• If we make our slack variables large enough we can 
satisfy all of the constraints 

• C is the regularization parameter 

• Large C makes constraints hard to ignore = small margin  

• Small C makes constraints easy to ignore = large margin 

• Still a unique minimum 



wTx+ b = 0

NOT Linearly Separable Data

w

b

||w||

2

||w||

wTx+ b = 1

wTx+ b = �1

⇠i > 2

0 < ⇠i < 1



And with a little manipulation we get 

Soft Margin and Slack Variables

min
w

||w||2 + C
NX

i

max(0, 1� yif(xi))

regularization   +   loss function



• If a point is on its side of the support vector(s), there is 
no contribution to the loss as  

• If the point is within the margin or on other side of the 
opposite support vector(s), then there is a contribution 
to the loss as yif(xi)) < 1

yif(xi)) � 1



yif(xi))

Loss
Hinge Loss

10-1-2-3
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wTx+ b = 0

NOT Linearly Separable Data
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⇠i > 2

0 < ⇠i < 1



There is a closed form solution to optimal w 

  

Alternatively, you use gradient descent! 

Optimization

min
w

||w||2 + C
NX

i

max(0, 1� yif(xi))

regularization   +   loss function



Our cost function for optimizing can be re-written: 

with  

Gradient Descent for SVM

� =
2

NC
and f(x) = wTx+ b

min
w

C(w) =
�

2
||w||2 + 1

N

NX

i

max(0, 1� yi f(xi))



So gradient descent might look like: 

with the learning rate   

but this gradient is not differentiable  

Gradient Descent for SVM

wt+1  wt � ⌘trwC(wt)

rwC(w)

⌘t



Loss

(Sub-)Gradient of Hinge Loss

10-1-2-3
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L(x, y;w) = max(0, 1� yf(x))

rwL = �yx

rwL = 0

yf(x))



So now the whole gradient becomes: 

where 1[t]  is and indicator function = 1 if 
argument is true and 0 if false.

rwC(w) = �w � 1

N

NX

i

1[ywTxi < 1] y xi



Pegasos Algorithm



Pegasos is a stochastic gradient descent 
algorithm with a mini batch size = 1!




