Deep Learning
for
Computer Vision

Lecture 3: Probability, Bayes Theorem, and Bayes Classification

Peter Belhumeur

Computer Science
Columbia University



Probability



Should you play this game?

Game: A fair die is rolled. If the result is 2, 3, or 4, you win $1;
if it is 5, you win $2; but if it is 1 or 6, you lose $3.
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Frequentist View of Probability

The probability of an event a could be defined as:

P(a) = lim 1%

n— 00 n

Where N(a) is the number of times that event a happens in n trials
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Bring on the Notation

Let Q2 be the sample space, a in Q be a single outcome,
A In Q a set of outcomes of interest, then

1. Pla) > 0VA €
2. P(Q) =1
3. AiNAj=01i,j = PU14;) =Y P(A)

4. P(0) =0 =
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Independence

The probability of independent events A, B and C is given by:

P(A,B,C)= P(A)P(B)P(C)

A and B are independent, if knowing that A has happened
does not say anything about B happening
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Conditional Probability

We say “probabilty of A given B” to mean the probability of
event A given that event B occurs.
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Conditional Probability

So “probability of A given B” is the probability that both event
A and B occur normalized by the probability of event B.

P(A, B)

P(AIB) = —
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Bayes Theorem

Provides a way to convert a-priori probabilities to a-
posteriori probabillities:

P(B|A)P(A)
P(B)

P(A|B) =
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Random Variables

A (scalar) random variable X is a function that maps the
outcome of a random event into real scalar values

. X(w)
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Random Variable’s Distributions

Cumulative Probability Distribution (CDF):

Probability Density Function (PDF):

 dr

px ()
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The PDF integrates to 1

So as you would expect:
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Uniform Distribution

A R.V. X that is uniformly distributed between x; and X,
has density function:

— otherwise
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Gaussian (Normal) Distribution

A R.V. X that is normally distributed has density function:

1 —(w—2u)2
p— 20
p(x) N
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Simple Statistics

Expectation (Mean or First Moment):

E(X) = / e p(z) da

Second Moment:

E(X?) = /OO x° p(x) dz

— OO
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Simple Statistics

Variance of X:
Var(X) = E[(X — E[X])?]

= [ - BIX)? (o) da
_ B[X?] - (B[X))’

Standard Deviation of X:

Std(X) = /Var(X



Sample Mean

Given a set of N samples from a distribution, we can estimate the
mean of the distribution by:

| N
M:NZ%
i=1

Pattern Classification, Chapter 1



Sample Variance

Given a set of N samples from a distribution, we can estimate the
variance of the distribution by:
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Bayesian Classitiers



Classification: An Example

Classify fish species at an Alaskan Canning Factory

Sea bass

/
\ Salmon

Species
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Preprocessing

Feature extraction

'salmon” 'sea bass"™
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Priors

The sea bass/salmon example:

Let w1 be the state or “class” that the fish is a salmon

Let w, be the state or “class” that the fish is a sea bass

Let P(w4) be the prior probability that a fish is salmon
Let P(w,) be the prior probability that a fish is sea bass

P(wn,) + P( w,) =1 (no other species are possible)
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Dumb Classifier

Decision rule with only the prior information:

Decide w, if P(w,) > P(n,) otherwise decide w,

This does not use any of the class—conditional
information or “features”
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Our features are “lightness” and the width of the fish
Fish mp x7 = [x,, X,]

/N

Lightness Width
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ow should we use our “features””?



Minimum Error Rate Classifier

Probability of error given x:
P(error | x) = min [P(w, | x), P(w, | x)]
Minimizing the probability of error:

Decide w, if P(w, | x) > P(w, | x); otherwise decide w,
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How do we compute P(w; | x)?
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Bayes Theorem

z|w;) P(w;)
P(x)

_ plx|wi) Plwi)
Zi p(w|w;)P(w;)

P(ei]z) = £

~ likelthood X prior

evidence
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Likelihood (Class-conditional Density)

Need the class—conditional information:
p(x | wy) and p(x | w,)

describe the difference in “lightness” between
populations of sea-bass and salmon

These are also known as likelihood functions.
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FIGURE 2.1. Hypothetical class-conditional probability density functions show the
probability density of measuring a particular feature value x given the pattern is in
category w;. If x represents the lightness of a fish, the two curves might describe the
difference in lightness of populations of two types of fish. Density functions are normal-
ized, and thus the area under each curve is 1.0. From: Richard O. Duda, Peter E. Hart,
and David G. Stork, Fattern Classification. Copyright © 2001 by John Wiley & Sons,
InC.
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FIGURE 2.2. Posterior probabilities for the particular priors P(w,) = 2/3 and P(w;)
= 1/3 for the class-conditional probability densities shown in Fig. 2.1. Thus in this
case, given that a pattern is measured to have feature value x = 14, the probability it is
in category , is roughly 0.08, and that it is in @, is 0.92. At every x, the posteriors sum
1o 1.0. From: Richard O. Duda, Peter E. Hart, and David G. Stork, Fattern Classification.
Copyright © 2001 by John Wiley & Sons, Inc.



It our feature space is one dimensional then
the "boundary” that separates the area
assigned to one class vs. another class is a
point.



But what happens as the dimensionality of
our feature space increases?



Let’s think of a classifier as set of scalar
functions ¢;(x) — one for each class i — that
assigns a score to the vector of feature values

X and then choses the class 1 with the highest
SCore.




So a classifier uses the following decision rule:

Choose class i if gi(x) > gj(x) Vj, i # ]



SO our Bayesian classifier assigns a score
based on the a posteriori probabillities:

gi(x) = P(w;|x).



So if our feature space is n-dimensional, i.e., x € R",
then the boundaries separating regions that our classitier
assigns to the same class is n-1 dimensional surface.



