
Deep Learning 

for 


Computer Vision

Lecture 3: Probability, Bayes Theorem, and Bayes Classification

Peter Belhumeur


Computer Science

Columbia University



 
Probability 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  Should you play this game?

Game: A fair die is rolled. If the result is 2, 3, or 4, you win $1; 
if it is 5, you win $2; but if it is 1 or 6, you lose $3.
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Frequentist View of Probability 

The probability of an event a could be defined as:

Where N(a) is the number of times that event a happens in n trials

P (a) = limn!1
N(a)

n

P (a) = lim
n!1

N(a)

n
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Bring on the Notation

Let Ω be the sample space,  !" Ω be a single outcome, 
A !" Ω a set of outcomes of interest, then

a

1. P (a) � 0 8A 2 ⌦

2. P (⌦) = 1

3. Ai \Aj = ; i, j =) P ([n
i=1Ai) =

nX

i=1

P (Ai)

4. P (;) = 0
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Independence

The probability of independent events A, B and C is given by:

A and B are independent, if knowing that A has happened 
does not say anything about B happening

P (A,B,C) = P (A)P (B)P (C)
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Conditional Probability

We say “probabilty of A given B” to mean the probability of 
event A given that event B occurs. 

A

B

Ω
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Conditional Probability

We say “probability of A given B” to mean the probability of 
event A given that event B occurs. 

AB

Ω
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Conditional Probability

We say “probabilty of A given B” to mean the probability of 
event A given that event B occurs. 

A

B

Ω
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Conditional Probability

So “probability of A given B” is the probability that both event 
A and B occur normalized by the probability of event B.

P (A|B) =
P (A,B)

P (B)
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Bayes Theorem

Provides a way to convert a-priori probabilities to a-
posteriori probabilities:

P (A|B) =
P (B|A)P (A)

P (B)
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Random Variables

A (scalar) random variable X is a function that maps the 
outcome of a random event into real scalar values

ω

Ω X(ω)
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Random Variable’s Distributions

Cumulative Probability Distribution (CDF):

 Probability Density Function (PDF):

FX(x) = P (X  x)

pX(x) =
dFX(x)

dx
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The PDF integrates to 1

So as you would expect:

Z 1

�1
pX(x)dx = 1.0



Pattern Classification, Chapter 1

Uniform Distribution

A R.V. X that is uniformly distributed between x1 and x2 
has density function:

X1 X2

pX(x) =
1

x2 � x1
x1  x  x2

= 0 otherwise
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Gaussian (Normal) Distribution

A R.V. X that is normally distributed has density function:

µ

p(x) =
1p
2⇡�2

e
�(x�µ)2

2�2
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Simple Statistics

Expectation (Mean or First Moment):

Second Moment:

E(X) =

Z 1

�1
x p(x) dx

E(X2) =

Z 1

�1
x2 p(x) dx
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Simple Statistics

Variance of X:

Standard Deviation of X:

V ar(X) = E[(X � E[X])2]

=

Z 1

�1
(x� E[X])2 p(x) dx

= E[X2]� (E[X])2

Std(X) =
p

V ar(X)
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Sample Mean

Given a set of N samples from a distribution, we can estimate the 
mean of the distribution by:

µ =
1

N

NX

i=1

xi
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Sample Variance

Given a set of N samples from a distribution, we can estimate the 
variance of the distribution by:

�2 =
1

N � 1

NX

i=1

(xi � µ)2



Bayesian Classifiers
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Classification: An Example

Classify fish species at an Alaskan Canning Factory


	 	 	 	 	 Sea bass

	 	 Species

	 	 	 	 	 Salmon
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Priors

The sea bass/salmon example: 

Let ω1  be the state or “class” that the fish is a salmon

 
Let ω2  be the state or “class” that the fish is a sea bass


Let P(ω1)  be the prior probability that a fish is salmon


Let P(ω2)  be the prior probability that a fish is sea bass 

P(ω1) + P( ω2) = 1  (no other species are possible)



Pattern Classification, Chapter 2 (Part 1)

Decision rule with only the prior information:


Decide ω1 if P(ω1) > P(ω2) otherwise decide ω2


This does not use any of the class–conditional 
information or “features” 

Dumb Classifier
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Our features are “lightness” and the width of the fish


Fish	 	         xT = [x1, x2]

Lightness Width



How should we use our “features”?
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Probability of error given x:


	 	 P(error | x) = min [P(ω1 | x), P(ω2 | x)]


Minimizing the probability of error:


Decide ω1 if P(ω1 | x) > P(ω2 | x); otherwise decide ω2


                                

Minimum Error Rate Classifier
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How do we compute P(ωi | x)?


                                



Pattern Classification, Chapter 2 (Part 1)

Bayes Theorem

P (!i|x) =
⇢(x|!i)P (!i)

P (x)

=
⇢(x|!i)P (!i)P
i ⇢(x|!i)P (!i)

=
likelihood ⇥ prior

evidence
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Need the class–conditional information: 

p(x | ω1) and p(x | ω2) 


describe the difference in “lightness” between 
populations of sea-bass and salmon


These are also known as likelihood functions.

Likelihood (Class-conditional Density)
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If our feature space is one dimensional then 
the “boundary” that separates the area 

assigned to one class vs. another class is a 
point.



But what happens as the dimensionality of 
our feature space increases?



Let’s think of a classifier as set of scalar 
functions            — one for each class i — that 
assigns a score to the vector of feature values    
and then choses the class i with the highest 

score.

gi(x)

x



So a classifier uses the following decision rule:


Choose class i  if  


          

gi(x) > gj(x) 8 j, i 6= j



So our Bayesian classifier assigns a score 
based on the a posteriori probabilities: 


gi(x) = P (!i|x).



So if our feature space is n-dimensional, i.e.,             ,  
then the boundaries separating regions that our classifier 
assigns to the same class is n-1 dimensional surface.


          

x 2 Rn


